Revert sdmmc driver, fixes regression #1225. Also fix a logic bug

This commit is contained in:
TuxSH 2019-03-13 17:33:53 +01:00
parent 8ff5111e30
commit 3d2c12cf09
5 changed files with 364 additions and 577 deletions

View File

@ -2,4 +2,4 @@
#include "../../types.h" #include "../../types.h"
void wait_cycles(u32 us); void waitcycles(u32 us);

View File

@ -0,0 +1,16 @@
.text
.arm
.align 4
.global waitcycles
.type waitcycles, %function
waitcycles:
push {r0-r2, lr}
str r0, [sp, #4]
waitcycles_loop:
ldr r3, [sp, #4]
subs r2, r3, #1
str r2, [sp, #4]
cmp r3, #0
bne waitcycles_loop
pop {r0-r2, pc}

View File

@ -22,189 +22,143 @@
* along with this program. If not, see http://www.gnu.org/licenses/. * along with this program. If not, see http://www.gnu.org/licenses/.
*/ */
#include <stdint.h>
#include <stdbool.h>
#include "wait_cycles.h"
#include "sdmmc.h" #include "sdmmc.h"
#include "delay.h"
#define DATA32_SUPPORT static struct mmcdevice handleNAND;
static struct mmcdevice handleSD;
static inline u16 sdmmc_read16(u16 reg)
{
return *(vu16 *)(SDMMC_BASE + reg);
}
struct mmcdevice handleNAND; static inline void sdmmc_write16(u16 reg, u16 val)
struct mmcdevice handleSD; {
*(vu16 *)(SDMMC_BASE + reg) = val;
}
static inline u32 sdmmc_read32(u16 reg)
{
return *(vu32 *)(SDMMC_BASE + reg);
}
static inline void sdmmc_write32(u16 reg, u32 val)
{
*(vu32 *)(SDMMC_BASE + reg) = val;
}
static inline void sdmmc_mask16(u16 reg, const u16 clear, const u16 set)
{
u16 val = sdmmc_read16(reg);
val &= ~clear;
val |= set;
sdmmc_write16(reg, val);
}
static inline void setckl(u32 data)
{
sdmmc_mask16(REG_SDCLKCTL, 0x100, 0);
sdmmc_mask16(REG_SDCLKCTL, 0x2FF, data & 0x2FF);
sdmmc_mask16(REG_SDCLKCTL, 0x0, 0x100);
}
mmcdevice *getMMCDevice(int drive) mmcdevice *getMMCDevice(int drive)
{ {
if(drive==0) return &handleNAND; if(drive == 0) return &handleNAND;
return &handleSD; return &handleSD;
} }
static int get_error(struct mmcdevice *ctx) static int geterror(struct mmcdevice *ctx)
{ {
return (int)((ctx->error << 29) >> 31); return (int)((ctx->error << 29) >> 31);
} }
static void inittarget(struct mmcdevice *ctx)
static void set_target(struct mmcdevice *ctx)
{ {
sdmmc_mask16(REG_SDPORTSEL,0x3,(u16)ctx->devicenumber); sdmmc_mask16(REG_SDPORTSEL, 0x3, (u16)ctx->devicenumber);
setckl(ctx->clk); setckl(ctx->clk);
if(ctx->SDOPT == 0) if(ctx->SDOPT == 0) sdmmc_mask16(REG_SDOPT, 0, 0x8000);
{ else sdmmc_mask16(REG_SDOPT, 0x8000, 0);
sdmmc_mask16(REG_SDOPT,0,0x8000);
}
else
{
sdmmc_mask16(REG_SDOPT,0x8000,0);
}
} }
static void sdmmc_send_command(struct mmcdevice *ctx, u32 cmd, u32 args) static void __attribute__((noinline)) sdmmc_send_command(struct mmcdevice *ctx, u32 cmd, u32 args)
{ {
const bool getSDRESP = (cmd << 15) >> 31; u32 getSDRESP = (cmd << 15) >> 31;
u16 flags = (cmd << 15) >> 31; u16 flags = (cmd << 15) >> 31;
const bool readdata = cmd & 0x20000; const int readdata = cmd & 0x20000;
const bool writedata = cmd & 0x40000; const int writedata = cmd & 0x40000;
if(readdata || writedata) if(readdata || writedata)
{
flags |= TMIO_STAT0_DATAEND; flags |= TMIO_STAT0_DATAEND;
}
ctx->error = 0; ctx->error = 0;
while((sdmmc_read16(REG_SDSTATUS1) & TMIO_STAT1_CMD_BUSY)); //mmc working? while((sdmmc_read16(REG_SDSTATUS1) & TMIO_STAT1_CMD_BUSY)); //mmc working?
sdmmc_write16(REG_SDIRMASK0,0); sdmmc_write16(REG_SDIRMASK0, 0);
sdmmc_write16(REG_SDIRMASK1,0); sdmmc_write16(REG_SDIRMASK1, 0);
sdmmc_write16(REG_SDSTATUS0,0); sdmmc_write16(REG_SDSTATUS0, 0);
sdmmc_write16(REG_SDSTATUS1,0); sdmmc_write16(REG_SDSTATUS1, 0);
sdmmc_mask16(REG_DATACTL32,0x1800,0x400); // Disable TX32RQ and RX32RDY IRQ. Clear fifo. sdmmc_mask16(REG_DATACTL32, 0x1800, 0);
sdmmc_write16(REG_SDCMDARG0,args &0xFFFF); sdmmc_write16(REG_SDCMDARG0, args & 0xFFFF);
sdmmc_write16(REG_SDCMDARG1,args >> 16); sdmmc_write16(REG_SDCMDARG1, args >> 16);
sdmmc_write16(REG_SDCMD,cmd &0xFFFF); sdmmc_write16(REG_SDCMD, cmd & 0xFFFF);
u32 size = ctx->size; u32 size = ctx->size;
const u16 blkSize = sdmmc_read16(REG_SDBLKLEN32); u8 *rDataPtr = ctx->rData;
u32 *rDataPtr32 = (u32*)(void*)ctx->rData; const u8 *tDataPtr = ctx->tData;
u8 *rDataPtr8 = ctx->rData;
const u32 *tDataPtr32 = (u32*)(void*)ctx->tData;
const u8 *tDataPtr8 = ctx->tData;
bool rUseBuf = ( NULL != rDataPtr32 ); bool rUseBuf = rDataPtr != NULL;
bool tUseBuf = ( NULL != tDataPtr32 ); bool tUseBuf = tDataPtr != NULL;
u16 status0 = 0; u16 status0 = 0;
while(1) while(true)
{ {
volatile u16 status1 = sdmmc_read16(REG_SDSTATUS1); vu16 status1 = sdmmc_read16(REG_SDSTATUS1);
#ifdef DATA32_SUPPORT vu16 ctl32 = sdmmc_read16(REG_DATACTL32);
volatile u16 ctl32 = sdmmc_read16(REG_DATACTL32);
if((ctl32 & 0x100)) if((ctl32 & 0x100))
#else
if((status1 & TMIO_STAT1_RXRDY))
#endif
{ {
if(readdata) if(readdata)
{ {
if(rUseBuf) if(rUseBuf)
{ {
sdmmc_mask16(REG_SDSTATUS1, TMIO_STAT1_RXRDY, 0); sdmmc_mask16(REG_SDSTATUS1, TMIO_STAT1_RXRDY, 0);
if(size >= blkSize) if(size > 0x1FF)
{ {
#ifdef DATA32_SUPPORT //Gabriel Marcano: This implementation doesn't assume alignment.
if(!((u32)rDataPtr32 & 3)) //I've removed the alignment check doen with former rUseBuf32 as a result
for(int i = 0; i < 0x200; i += 4)
{ {
for(u32 i = 0; i < blkSize; i += 4) u32 data = sdmmc_read32(REG_SDFIFO32);
{ *rDataPtr++ = data;
*rDataPtr32++ = sdmmc_read32(REG_SDFIFO32); *rDataPtr++ = data >> 8;
} *rDataPtr++ = data >> 16;
*rDataPtr++ = data >> 24;
} }
else size -= 0x200;
{
for(u32 i = 0; i < blkSize; i += 4)
{
u32 data = sdmmc_read32(REG_SDFIFO32);
*rDataPtr8++ = data;
*rDataPtr8++ = data >> 8;
*rDataPtr8++ = data >> 16;
*rDataPtr8++ = data >> 24;
}
}
#else
if(!((u32)rDataPtr16 & 1))
{
for(u32 i = 0; i < blkSize; i += 4)
{
*rDataPtr16++ = sdmmc_read16(REG_SDFIFO);
}
}
else
{
for(u32 i = 0; i < blkSize; i += 4)
{
u16 data = sdmmc_read16(REG_SDFIFO);
*rDataPtr8++ = data;
*rDataPtr8++ = data >> 8;
}
}
#endif
size -= blkSize;
} }
} }
sdmmc_mask16(REG_DATACTL32, 0x800, 0); sdmmc_mask16(REG_DATACTL32, 0x800, 0);
} }
} }
#ifdef DATA32_SUPPORT
if(!(ctl32 & 0x200)) if(!(ctl32 & 0x200))
#else
if((status1 & TMIO_STAT1_TXRQ))
#endif
{ {
if(writedata) if(writedata)
{ {
if(tUseBuf) if(tUseBuf)
{ {
sdmmc_mask16(REG_SDSTATUS1, TMIO_STAT1_TXRQ, 0); sdmmc_mask16(REG_SDSTATUS1, TMIO_STAT1_TXRQ, 0);
if(size >= blkSize) if(size > 0x1FF)
{ {
#ifdef DATA32_SUPPORT for(int i = 0; i < 0x200; i += 4)
if(!((u32)tDataPtr32 & 3))
{ {
for(u32 i = 0; i < blkSize; i += 4) u32 data = *tDataPtr++;
{ data |= (u32)*tDataPtr++ << 8;
sdmmc_write32(REG_SDFIFO32, *tDataPtr32++); data |= (u32)*tDataPtr++ << 16;
} data |= (u32)*tDataPtr++ << 24;
sdmmc_write32(REG_SDFIFO32, data);
} }
else size -= 0x200;
{
for(u32 i = 0; i < blkSize; i += 4)
{
u32 data = *tDataPtr8++;
data |= (u32)*tDataPtr8++ << 8;
data |= (u32)*tDataPtr8++ << 16;
data |= (u32)*tDataPtr8++ << 24;
sdmmc_write32(REG_SDFIFO32, data);
}
}
#else
if(!((u32)tDataPtr16 & 1))
{
for(u32 i = 0; i < blkSize; i += 2)
{
sdmmc_write16(REG_SDFIFO, *tDataPtr16++);
}
}
else
{
for(u32 i = 0; i < blkSize; i += 2)
{
u16 data = *tDataPtr8++;
data |= (u16)(*tDataPtr8++ << 8);
sdmmc_write16(REG_SDFIFO, data);
}
}
#endif
size -= blkSize;
} }
} }
@ -235,8 +189,8 @@ static void sdmmc_send_command(struct mmcdevice *ctx, u32 cmd, u32 args)
} }
ctx->stat0 = sdmmc_read16(REG_SDSTATUS0); ctx->stat0 = sdmmc_read16(REG_SDSTATUS0);
ctx->stat1 = sdmmc_read16(REG_SDSTATUS1); ctx->stat1 = sdmmc_read16(REG_SDSTATUS1);
sdmmc_write16(REG_SDSTATUS0,0); sdmmc_write16(REG_SDSTATUS0, 0);
sdmmc_write16(REG_SDSTATUS1,0); sdmmc_write16(REG_SDSTATUS1, 0);
if(getSDRESP != 0) if(getSDRESP != 0)
{ {
@ -247,243 +201,213 @@ static void sdmmc_send_command(struct mmcdevice *ctx, u32 cmd, u32 args)
} }
} }
int sdmmc_sdcard_writesectors(u32 sector_no, u32 numsectors, const u8 *in) int __attribute__((noinline)) sdmmc_sdcard_writesectors(u32 sector_no, u32 numsectors, const u8 *in)
{ {
if(handleSD.isSDHC == 0) sector_no <<= 9; if(handleSD.isSDHC == 0) sector_no <<= 9;
set_target(&handleSD); inittarget(&handleSD);
sdmmc_write16(REG_SDSTOP,0x100); sdmmc_write16(REG_SDSTOP, 0x100);
#ifdef DATA32_SUPPORT sdmmc_write16(REG_SDBLKCOUNT32, numsectors);
sdmmc_write16(REG_SDBLKCOUNT32,numsectors); sdmmc_write16(REG_SDBLKLEN32, 0x200);
sdmmc_write16(REG_SDBLKLEN32,0x200); sdmmc_write16(REG_SDBLKCOUNT, numsectors);
#endif
sdmmc_write16(REG_SDBLKCOUNT,numsectors);
handleSD.tData = in; handleSD.tData = in;
handleSD.size = numsectors << 9; handleSD.size = numsectors << 9;
sdmmc_send_command(&handleSD,0x52C19,sector_no); sdmmc_send_command(&handleSD, 0x52C19, sector_no);
return get_error(&handleSD); return geterror(&handleSD);
} }
int sdmmc_sdcard_readsectors(u32 sector_no, u32 numsectors, u8 *out) int __attribute__((noinline)) sdmmc_sdcard_readsectors(u32 sector_no, u32 numsectors, u8 *out)
{ {
if(handleSD.isSDHC == 0) sector_no <<= 9; if(handleSD.isSDHC == 0) sector_no <<= 9;
set_target(&handleSD); inittarget(&handleSD);
sdmmc_write16(REG_SDSTOP,0x100); sdmmc_write16(REG_SDSTOP, 0x100);
#ifdef DATA32_SUPPORT sdmmc_write16(REG_SDBLKCOUNT32, numsectors);
sdmmc_write16(REG_SDBLKCOUNT32,numsectors); sdmmc_write16(REG_SDBLKLEN32, 0x200);
sdmmc_write16(REG_SDBLKLEN32,0x200); sdmmc_write16(REG_SDBLKCOUNT, numsectors);
#endif
sdmmc_write16(REG_SDBLKCOUNT,numsectors);
handleSD.rData = out; handleSD.rData = out;
handleSD.size = numsectors << 9; handleSD.size = numsectors << 9;
sdmmc_send_command(&handleSD,0x33C12,sector_no); sdmmc_send_command(&handleSD, 0x33C12, sector_no);
return get_error(&handleSD); return geterror(&handleSD);
} }
int __attribute__((noinline)) sdmmc_nand_readsectors(u32 sector_no, u32 numsectors, u8 *out)
int sdmmc_nand_readsectors(u32 sector_no, u32 numsectors, u8 *out)
{ {
if(handleNAND.isSDHC == 0) sector_no <<= 9; if(handleNAND.isSDHC == 0) sector_no <<= 9;
set_target(&handleNAND); inittarget(&handleNAND);
sdmmc_write16(REG_SDSTOP,0x100); sdmmc_write16(REG_SDSTOP, 0x100);
#ifdef DATA32_SUPPORT sdmmc_write16(REG_SDBLKCOUNT32, numsectors);
sdmmc_write16(REG_SDBLKCOUNT32,numsectors); sdmmc_write16(REG_SDBLKLEN32, 0x200);
sdmmc_write16(REG_SDBLKLEN32,0x200); sdmmc_write16(REG_SDBLKCOUNT, numsectors);
#endif
sdmmc_write16(REG_SDBLKCOUNT,numsectors);
handleNAND.rData = out; handleNAND.rData = out;
handleNAND.size = numsectors << 9; handleNAND.size = numsectors << 9;
sdmmc_send_command(&handleNAND,0x33C12,sector_no); sdmmc_send_command(&handleNAND, 0x33C12, sector_no);
return get_error(&handleNAND); inittarget(&handleSD);
return geterror(&handleNAND);
} }
int sdmmc_nand_writesectors(u32 sector_no, u32 numsectors, const u8 *in) //experimental int __attribute__((noinline)) sdmmc_nand_writesectors(u32 sector_no, u32 numsectors, const u8 *in) //experimental
{ {
if(handleNAND.isSDHC == 0) sector_no <<= 9; if(handleNAND.isSDHC == 0) sector_no <<= 9;
set_target(&handleNAND); inittarget(&handleNAND);
sdmmc_write16(REG_SDSTOP,0x100); sdmmc_write16(REG_SDSTOP, 0x100);
#ifdef DATA32_SUPPORT sdmmc_write16(REG_SDBLKCOUNT32, numsectors);
sdmmc_write16(REG_SDBLKCOUNT32,numsectors); sdmmc_write16(REG_SDBLKLEN32, 0x200);
sdmmc_write16(REG_SDBLKLEN32,0x200); sdmmc_write16(REG_SDBLKCOUNT, numsectors);
#endif
sdmmc_write16(REG_SDBLKCOUNT,numsectors);
handleNAND.tData = in; handleNAND.tData = in;
handleNAND.size = numsectors << 9; handleNAND.size = numsectors << 9;
sdmmc_send_command(&handleNAND,0x52C19,sector_no); sdmmc_send_command(&handleNAND, 0x52C19, sector_no);
return get_error(&handleNAND); inittarget(&handleSD);
return geterror(&handleNAND);
} }
static u32 sdmmc_calc_size(u8* csd, int type) static u32 calcSDSize(u8 *csd, int type)
{ {
u32 result = 0; u32 result = 0;
if(type == -1) type = csd[14] >> 6; if(type == -1) type = csd[14] >> 6;
switch(type) switch(type)
{ {
case 0: case 0:
{ {
u32 block_len=csd[9]&0xf; u32 block_len = csd[9] & 0xF;
block_len=1u<<block_len; block_len = 1u << block_len;
u32 mult=( u32)((csd[4]>>7)|((csd[5]&3)<<1)); u32 mult = (u32)((csd[4] >> 7) | ((csd[5] & 3) << 1));
mult=1u<<(mult+2); mult = 1u << (mult + 2);
result=csd[8]&3; result = csd[8] & 3;
result=(result<<8)|csd[7]; result = (result << 8) | csd[7];
result=(result<<2)|(csd[6]>>6); result = (result << 2) | (csd[6] >> 6);
result=(result+1)*mult*block_len/512; result = (result + 1) * mult * block_len / 512;
} break;
break; }
case 1: case 1:
result=csd[7]&0x3f; result = csd[7] & 0x3F;
result=(result<<8)|csd[6]; result = (result << 8) | csd[6];
result=(result<<8)|csd[5]; result = (result << 8) | csd[5];
result=(result+1)*1024; result = (result + 1) * 1024;
break; break;
default: default:
break; //Do nothing otherwise FIXME perhaps return some error? break; //Do nothing otherwise FIXME perhaps return some error?
} }
return result; return result;
} }
void sdmmc_init() static void InitSD()
{
*(vu32 *)0x10000020 = 0; //InitFS stuff
*(vu32 *)0x10000020 = 0x200; //InitFS stuff
*(vu16 *)0x10006100 &= 0xF7FFu; //SDDATACTL32
*(vu16 *)0x10006100 &= 0xEFFFu; //SDDATACTL32
*(vu16 *)0x10006100 |= 0x402u; //SDDATACTL32
*(vu16 *)0x100060D8 = (*(vu16 *)0x100060D8 & 0xFFDD) | 2;
*(vu16 *)0x10006100 &= 0xFFFFu; //SDDATACTL32
*(vu16 *)0x100060D8 &= 0xFFDFu; //SDDATACTL
*(vu16 *)0x10006104 = 512; //SDBLKLEN32
*(vu16 *)0x10006108 = 1; //SDBLKCOUNT32
*(vu16 *)0x100060E0 &= 0xFFFEu; //SDRESET
*(vu16 *)0x100060E0 |= 1u; //SDRESET
*(vu16 *)0x10006020 |= TMIO_MASK_ALL; //SDIR_MASK0
*(vu16 *)0x10006022 |= TMIO_MASK_ALL>>16; //SDIR_MASK1
*(vu16 *)0x100060FC |= 0xDBu; //SDCTL_RESERVED7
*(vu16 *)0x100060FE |= 0xDBu; //SDCTL_RESERVED8
*(vu16 *)0x10006002 &= 0xFFFCu; //SDPORTSEL
*(vu16 *)0x10006024 = 0x20;
*(vu16 *)0x10006028 = 0x40EE;
*(vu16 *)0x10006002 &= 0xFFFCu; ////SDPORTSEL
*(vu16 *)0x10006026 = 512; //SDBLKLEN
*(vu16 *)0x10006008 = 0; //SDSTOP
}
static int Nand_Init()
{ {
//NAND //NAND
handleNAND.isSDHC = 0; handleNAND.isSDHC = 0;
handleNAND.SDOPT = 0; handleNAND.SDOPT = 0;
handleNAND.res = 0; handleNAND.res = 0;
handleNAND.initarg = 1; handleNAND.initarg = 1;
handleNAND.clk = 0x20; // 523.655968 KHz handleNAND.clk = 0x80;
handleNAND.devicenumber = 1; handleNAND.devicenumber = 1;
inittarget(&handleNAND);
waitcycles(0xF000);
sdmmc_send_command(&handleNAND, 0, 0);
do
{
do
{
sdmmc_send_command(&handleNAND, 0x10701, 0x100000);
}
while(!(handleNAND.error & 1));
}
while((handleNAND.ret[0] & 0x80000000) == 0);
sdmmc_send_command(&handleNAND, 0x10602, 0x0);
if((handleNAND.error & 0x4)) return -1;
sdmmc_send_command(&handleNAND, 0x10403, handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4)) return -1;
sdmmc_send_command(&handleNAND, 0x10609, handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4)) return -1;
handleNAND.total_size = calcSDSize((u8*)&handleNAND.ret[0], 0);
handleNAND.clk = 1;
setckl(1);
sdmmc_send_command(&handleNAND, 0x10407, handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4)) return -1;
handleNAND.SDOPT = 1;
sdmmc_send_command(&handleNAND, 0x10506, 0x3B70100);
if((handleNAND.error & 0x4)) return -1;
sdmmc_send_command(&handleNAND, 0x10506, 0x3B90100);
if((handleNAND.error & 0x4)) return -1;
sdmmc_send_command(&handleNAND, 0x1040D, handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4)) return -1;
sdmmc_send_command(&handleNAND, 0x10410, 0x200);
if((handleNAND.error & 0x4)) return -1;
handleNAND.clk |= 0x200;
inittarget(&handleSD);
return 0;
}
static int SD_Init()
{
//SD //SD
handleSD.isSDHC = 0; handleSD.isSDHC = 0;
handleSD.SDOPT = 0; handleSD.SDOPT = 0;
handleSD.res = 0; handleSD.res = 0;
handleSD.initarg = 0; handleSD.initarg = 0;
handleSD.clk = 0x20; // 523.655968 KHz handleSD.clk = 0x80;
handleSD.devicenumber = 0; handleSD.devicenumber = 0;
*(vu16*)0x10006100 &= 0xF7FFu; //SDDATACTL32 inittarget(&handleSD);
*(vu16*)0x10006100 &= 0xEFFFu; //SDDATACTL32
#ifdef DATA32_SUPPORT
*(vu16*)0x10006100 |= 0x402u; //SDDATACTL32
#else
*(vu16*)0x10006100 |= 0x402u; //SDDATACTL32
#endif
*(vu16*)0x100060D8 = (*(vu16*)0x100060D8 & 0xFFDD) | 2;
#ifdef DATA32_SUPPORT
*(vu16*)0x10006100 &= 0xFFFFu; //SDDATACTL32
*(vu16*)0x100060D8 &= 0xFFDFu; //SDDATACTL
*(vu16*)0x10006104 = 512; //SDBLKLEN32
#else
*(vu16*)0x10006100 &= 0xFFFDu; //SDDATACTL32
*(vu16*)0x100060D8 &= 0xFFDDu; //SDDATACTL
*(vu16*)0x10006104 = 0; //SDBLKLEN32
#endif
*(vu16*)0x10006108 = 1; //SDBLKCOUNT32
*(vu16*)0x100060E0 &= 0xFFFEu; //SDRESET
*(vu16*)0x100060E0 |= 1u; //SDRESET
*(vu16*)0x10006020 |= TMIO_MASK_ALL; //SDIR_MASK0
*(vu16*)0x10006022 |= TMIO_MASK_ALL>>16; //SDIR_MASK1
*(vu16*)0x100060FC |= 0xDBu; //SDCTL_RESERVED7
*(vu16*)0x100060FE |= 0xDBu; //SDCTL_RESERVED8
*(vu16*)0x10006002 &= 0xFFFCu; //SDPORTSEL
#ifdef DATA32_SUPPORT
*(vu16*)0x10006024 = 0x20;
*(vu16*)0x10006028 = 0x40E9;
#else
*(vu16*)0x10006024 = 0x40; //Nintendo sets this to 0x20
*(vu16*)0x10006028 = 0x40E9; //Nintendo sets this to 0x40EE
#endif
*(vu16*)0x10006002 &= 0xFFFCu; ////SDPORTSEL
*(vu16*)0x10006026 = 512; //SDBLKLEN
*(vu16*)0x10006008 = 0; //SDSTOP
}
int Nand_Init() waitcycles(1u << 22); //Card needs a little bit of time to be detected, it seems FIXME test again to see what a good number is for the delay
{
// init the handle
handleNAND.isSDHC = 0;
handleNAND.SDOPT = 0;
handleNAND.res = 0;
handleNAND.initarg = 1;
handleNAND.clk = 0x20; // 523.655968 KHz
handleNAND.devicenumber = 1;
// The eMMC is always on. Nothing special to do. //If not inserted
set_target(&handleNAND); if(!(*((vu16 *)(SDMMC_BASE + REG_SDSTATUS0)) & TMIO_STAT0_SIGSTATE)) return 5;
sdmmc_send_command(&handleNAND,0,0); sdmmc_send_command(&handleSD, 0, 0);
sdmmc_send_command(&handleSD, 0x10408, 0x1AA);
do
{
do
{
sdmmc_send_command(&handleNAND,0x10701,0x100000);
} while ( !(handleNAND.error & 1) );
}
while((handleNAND.ret[0] & 0x80000000) == 0);
sdmmc_send_command(&handleNAND,0x10602,0x0);
if((handleNAND.error & 0x4))return -1;
sdmmc_send_command(&handleNAND,0x10403,handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4))return -1;
sdmmc_send_command(&handleNAND,0x10609,handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4))return -1;
handleNAND.total_size = sdmmc_calc_size((u8*)&handleNAND.ret[0],0);
setckl(0x201); // 16.756991 MHz
sdmmc_send_command(&handleNAND,0x10407,handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4))return -1;
handleNAND.SDOPT = 1;
sdmmc_send_command(&handleNAND,0x10506,0x3B70100); // Set 4 bit bus width.
if((handleNAND.error & 0x4))return -1;
sdmmc_mask16(REG_SDOPT, 0x8000, 0); // Switch to 4 bit mode.
sdmmc_send_command(&handleNAND,0x10506,0x3B90100); // Switch to high speed timing.
if((handleNAND.error & 0x4))return -1;
handleNAND.clk = 0x200; // 33.513982 MHz
setckl(0x200);
sdmmc_send_command(&handleNAND,0x1040D,handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4))return -1;
sdmmc_send_command(&handleNAND,0x10410,0x200);
if((handleNAND.error & 0x4))return -1;
return 0;
}
int SD_Init()
{
// init the handle
handleSD.isSDHC = 0;
handleSD.SDOPT = 0;
handleSD.res = 0;
handleSD.initarg = 0;
handleSD.clk = 0x20; // 523.655968 KHz
handleSD.devicenumber = 0;
// We need to send at least 74 clock pulses.
set_target(&handleSD);
wait_cycles(0x1980); // ~75-76 clocks
sdmmc_send_command(&handleSD,0,0);
sdmmc_send_command(&handleSD,0x10408,0x1AA);
u32 temp = (handleSD.error & 0x1) << 0x1E; u32 temp = (handleSD.error & 0x1) << 0x1E;
u32 temp2 = 0; u32 temp2 = 0;
do do
{ {
do do
{ {
sdmmc_send_command(&handleSD,0x10437,handleSD.initarg << 0x10); sdmmc_send_command(&handleSD, 0x10437, handleSD.initarg << 0x10);
sdmmc_send_command(&handleSD,0x10769,0x10100000 | temp); // Allow 150mA, 3.2-3.3V (from Process9) sdmmc_send_command(&handleSD, 0x10769, 0x00FF8000 | temp);
temp2 = 1; temp2 = 1;
} while ( !(handleSD.error & 1) ); }
while(!(handleSD.error & 1));
} }
while((handleSD.ret[0] & 0x80000000) == 0); while((handleSD.ret[0] & 0x80000000) == 0);
@ -492,127 +416,67 @@ int SD_Init()
handleSD.isSDHC = temp2; handleSD.isSDHC = temp2;
sdmmc_send_command(&handleSD,0x10602,0); sdmmc_send_command(&handleSD, 0x10602, 0);
if((handleSD.error & 0x4)) return -1; if((handleSD.error & 0x4)) return -1;
sdmmc_send_command(&handleSD,0x10403,0); sdmmc_send_command(&handleSD, 0x10403, 0);
if((handleSD.error & 0x4)) return -2; if((handleSD.error & 0x4)) return -2;
handleSD.initarg = handleSD.ret[0] >> 0x10; handleSD.initarg = handleSD.ret[0] >> 0x10;
sdmmc_send_command(&handleSD,0x10609,handleSD.initarg << 0x10); sdmmc_send_command(&handleSD, 0x10609, handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -3; if((handleSD.error & 0x4)) return -3;
// Command Class 10 support handleSD.total_size = calcSDSize((u8*)&handleSD.ret[0], -1);
const bool cmd6Supported = ((u8*)handleSD.ret)[10] & 0x40; handleSD.clk = 1;
handleSD.total_size = sdmmc_calc_size((u8*)&handleSD.ret[0],-1); setckl(1);
setckl(0x201); // 16.756991 MHz
sdmmc_send_command(&handleSD,0x10507,handleSD.initarg << 0x10); sdmmc_send_command(&handleSD, 0x10507, handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -4; if((handleSD.error & 0x4)) return -4;
// CMD55 sdmmc_send_command(&handleSD, 0x10437, handleSD.initarg << 0x10);
sdmmc_send_command(&handleSD,0x10437,handleSD.initarg << 0x10); if((handleSD.error & 0x4)) return -5;
if(handleSD.error & 0x4) return -5;
// ACMD42 SET_CLR_CARD_DETECT
sdmmc_send_command(&handleSD,0x1076A,0x0);
if(handleSD.error & 0x4) return -6;
sdmmc_send_command(&handleSD,0x10437,handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -7;
handleSD.SDOPT = 1; handleSD.SDOPT = 1;
sdmmc_send_command(&handleSD,0x10446,0x2); sdmmc_send_command(&handleSD, 0x10446, 0x2);
if((handleSD.error & 0x4)) return -6;
sdmmc_send_command(&handleSD, 0x1040D, handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -7;
sdmmc_send_command(&handleSD, 0x10410, 0x200);
if((handleSD.error & 0x4)) return -8; if((handleSD.error & 0x4)) return -8;
sdmmc_mask16(REG_SDOPT, 0x8000, 0); // Switch to 4 bit mode. handleSD.clk |= 0x200;
// TODO: CMD6 to switch to high speed mode.
if(cmd6Supported)
{
sdmmc_write16(REG_SDSTOP,0);
sdmmc_write16(REG_SDBLKLEN32,64);
sdmmc_write16(REG_SDBLKLEN,64);
handleSD.rData = NULL;
handleSD.size = 64;
sdmmc_send_command(&handleSD,0x31C06,0x80FFFFF1);
sdmmc_write16(REG_SDBLKLEN,512);
if(handleSD.error & 0x4) return -9;
handleSD.clk = 0x200; // 33.513982 MHz
setckl(0x200);
}
else handleSD.clk = 0x201; // 16.756991 MHz
sdmmc_send_command(&handleSD,0x1040D,handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -9;
sdmmc_send_command(&handleSD,0x10410,0x200);
if((handleSD.error & 0x4)) return -10;
return 0; return 0;
} }
int sdmmc_get_cid(bool isNand, u32 *info) void sdmmc_get_cid(bool isNand, u32 *info)
{ {
struct mmcdevice *device; struct mmcdevice *device = isNand ? &handleNAND : &handleSD;
if(isNand)
device = &handleNAND; inittarget(device);
else
device = &handleSD;
set_target(device);
// use cmd7 to put sd card in standby mode // use cmd7 to put sd card in standby mode
// CMD7 // CMD7
{ sdmmc_send_command(device, 0x10507, 0);
sdmmc_send_command(device,0x10507,0);
//if((device->error & 0x4)) return -1;
}
// get sd card info // get sd card info
// use cmd10 to read CID // use cmd10 to read CID
{ sdmmc_send_command(device, 0x1060A, device->initarg << 0x10);
sdmmc_send_command(device,0x1060A,device->initarg << 0x10);
//if((device->error & 0x4)) return -2;
for( int i = 0; i < 4; ++i ) { for(int i = 0; i < 4; ++i)
info[i] = device->ret[i]; info[i] = device->ret[i];
}
}
// put sd card back to transfer mode // put sd card back to transfer mode
// CMD7 // CMD7
{ sdmmc_send_command(device, 0x10507, device->initarg << 0x10);
sdmmc_send_command(device,0x10507,device->initarg << 0x10);
//if((device->error & 0x4)) return -3;
}
return 0;
} }
u32 sdmmc_sdcard_init() u32 sdmmc_sdcard_init()
{ {
u32 ret = 0; u32 ret = 0;
InitSD();
// SD mount fix if(Nand_Init() != 0) ret |= 1;
*((vu16*)0x10000020) = 0x340; if(SD_Init() != 0) ret |= 2;
// init SDMMC / NAND
sdmmc_init();
if(Nand_Init() != 0) ret &= 1;
// init SDMMC / SDCARD
u32 timeout = 20; // number of tries (2ms per try)
do {
// if sd card is ready, stop polling
if(sdmmc_read16(REG_SDSTATUS0) & TMIO_STAT0_SIGSTATE)
break;
wait_cycles(268000000); // approx 2ms
timeout--;
} while(timeout);
if(!timeout || SD_Init() != 0) ret &= 2;
return ret; return ret;
} }

View File

@ -1,182 +1,100 @@
#pragma once #pragma once
/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Copyright (c) 2014-2015, Normmatt
*
* Alternatively, the contents of this file may be used under the terms
* of the GNU General Public License Version 2, as described below:
*
* This file is free software: you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 2 of the License, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
#include "../../types.h" #include "../../types.h"
#define SDMMC_BASE (0x10006000) #define SDMMC_BASE 0x10006000
#define REG_SDCMD (0x00) #define REG_SDCMD 0x00
#define REG_SDPORTSEL (0x02) #define REG_SDPORTSEL 0x02
#define REG_SDCMDARG (0x04) #define REG_SDCMDARG 0x04
#define REG_SDCMDARG0 (0x04) #define REG_SDCMDARG0 0x04
#define REG_SDCMDARG1 (0x06) #define REG_SDCMDARG1 0x06
#define REG_SDSTOP (0x08) #define REG_SDSTOP 0x08
#define REG_SDBLKCOUNT (0x0a) #define REG_SDBLKCOUNT 0x0A
#define REG_SDRESP0 (0x0c) #define REG_SDRESP0 0x0C
#define REG_SDRESP1 (0x0e) #define REG_SDRESP1 0x0E
#define REG_SDRESP2 (0x10) #define REG_SDRESP2 0x10
#define REG_SDRESP3 (0x12) #define REG_SDRESP3 0x12
#define REG_SDRESP4 (0x14) #define REG_SDRESP4 0x14
#define REG_SDRESP5 (0x16) #define REG_SDRESP5 0x16
#define REG_SDRESP6 (0x18) #define REG_SDRESP6 0x18
#define REG_SDRESP7 (0x1a) #define REG_SDRESP7 0x1A
#define REG_SDSTATUS0 (0x1c) #define REG_SDSTATUS0 0x1C
#define REG_SDSTATUS1 (0x1e) #define REG_SDSTATUS1 0x1E
#define REG_SDIRMASK0 (0x20) #define REG_SDIRMASK0 0x20
#define REG_SDIRMASK1 (0x22) #define REG_SDIRMASK1 0x22
#define REG_SDCLKCTL (0x24) #define REG_SDCLKCTL 0x24
#define REG_SDBLKLEN (0x26) #define REG_SDBLKLEN 0x26
#define REG_SDOPT (0x28) #define REG_SDOPT 0x28
#define REG_SDFIFO (0x30) #define REG_SDFIFO 0x30
#define REG_DATACTL (0xd8) #define REG_DATACTL 0xD8
#define REG_SDRESET (0xe0) #define REG_SDRESET 0xE0
#define REG_SDPROTECTED (0xf6) //bit 0 determines if sd is protected or not? #define REG_SDPROTECTED 0xF6 //bit 0 determines if sd is protected or not?
#define REG_DATACTL32 (0x100) #define REG_DATACTL32 0x100
#define REG_SDBLKLEN32 (0x104) #define REG_SDBLKLEN32 0x104
#define REG_SDBLKCOUNT32 (0x108) #define REG_SDBLKCOUNT32 0x108
#define REG_SDFIFO32 (0x10C) #define REG_SDFIFO32 0x10C
#define REG_CLK_AND_WAIT_CTL (0x138) #define REG_CLK_AND_WAIT_CTL 0x138
#define REG_RESET_SDIO (0x1e0) #define REG_RESET_SDIO 0x1E0
#define TMIO_STAT0_CMDRESPEND (0x0001) #define TMIO_STAT0_CMDRESPEND 0x0001
#define TMIO_STAT0_DATAEND (0x0004) #define TMIO_STAT0_DATAEND 0x0004
#define TMIO_STAT0_CARD_REMOVE (0x0008) #define TMIO_STAT0_CARD_REMOVE 0x0008
#define TMIO_STAT0_CARD_INSERT (0x0010) #define TMIO_STAT0_CARD_INSERT 0x0010
#define TMIO_STAT0_SIGSTATE (0x0020) #define TMIO_STAT0_SIGSTATE 0x0020
#define TMIO_STAT0_WRPROTECT (0x0080) #define TMIO_STAT0_WRPROTECT 0x0080
#define TMIO_STAT0_CARD_REMOVE_A (0x0100) #define TMIO_STAT0_CARD_REMOVE_A 0x0100
#define TMIO_STAT0_CARD_INSERT_A (0x0200) #define TMIO_STAT0_CARD_INSERT_A 0x0200
#define TMIO_STAT0_SIGSTATE_A (0x0400) #define TMIO_STAT0_SIGSTATE_A 0x0400
#define TMIO_STAT1_CMD_IDX_ERR (0x0001) #define TMIO_STAT1_CMD_IDX_ERR 0x0001
#define TMIO_STAT1_CRCFAIL (0x0002) #define TMIO_STAT1_CRCFAIL 0x0002
#define TMIO_STAT1_STOPBIT_ERR (0x0004) #define TMIO_STAT1_STOPBIT_ERR 0x0004
#define TMIO_STAT1_DATATIMEOUT (0x0008) #define TMIO_STAT1_DATATIMEOUT 0x0008
#define TMIO_STAT1_RXOVERFLOW (0x0010) #define TMIO_STAT1_RXOVERFLOW 0x0010
#define TMIO_STAT1_TXUNDERRUN (0x0020) #define TMIO_STAT1_TXUNDERRUN 0x0020
#define TMIO_STAT1_CMDTIMEOUT (0x0040) #define TMIO_STAT1_CMDTIMEOUT 0x0040
#define TMIO_STAT1_RXRDY (0x0100) #define TMIO_STAT1_RXRDY 0x0100
#define TMIO_STAT1_TXRQ (0x0200) #define TMIO_STAT1_TXRQ 0x0200
#define TMIO_STAT1_ILL_FUNC (0x2000) #define TMIO_STAT1_ILL_FUNC 0x2000
#define TMIO_STAT1_CMD_BUSY (0x4000) #define TMIO_STAT1_CMD_BUSY 0x4000
#define TMIO_STAT1_ILL_ACCESS (0x8000) #define TMIO_STAT1_ILL_ACCESS 0x8000
#define TMIO_MASK_ALL (0x837F031D) #define TMIO_MASK_ALL 0x837F031D
#define TMIO_MASK_GW (TMIO_STAT1_ILL_ACCESS | TMIO_STAT1_CMDTIMEOUT | TMIO_STAT1_TXUNDERRUN | TMIO_STAT1_RXOVERFLOW | \ #define TMIO_MASK_GW (TMIO_STAT1_ILL_ACCESS | TMIO_STAT1_CMDTIMEOUT | TMIO_STAT1_TXUNDERRUN | TMIO_STAT1_RXOVERFLOW | \
TMIO_STAT1_DATATIMEOUT | TMIO_STAT1_STOPBIT_ERR | TMIO_STAT1_CRCFAIL | TMIO_STAT1_CMD_IDX_ERR) TMIO_STAT1_DATATIMEOUT | TMIO_STAT1_STOPBIT_ERR | TMIO_STAT1_CRCFAIL | TMIO_STAT1_CMD_IDX_ERR)
#define TMIO_MASK_READOP (TMIO_STAT1_RXRDY | TMIO_STAT1_DATAEND) #define TMIO_MASK_READOP (TMIO_STAT1_RXRDY | TMIO_STAT1_DATAEND)
#define TMIO_MASK_WRITEOP (TMIO_STAT1_TXRQ | TMIO_STAT1_DATAEND) #define TMIO_MASK_WRITEOP (TMIO_STAT1_TXRQ | TMIO_STAT1_DATAEND)
#define SD_WRITE_PROTECTED (((*((vu16*)(SDMMC_BASE + REG_SDSTATUS0))) & (1 << 7 | 1 << 5)) == (1 << 5)) typedef struct mmcdevice {
u8 *rData;
const u8 *tData;
u32 size;
u32 error;
u16 stat0;
u16 stat1;
u32 ret[4];
u32 initarg;
u32 isSDHC;
u32 clk;
u32 SDOPT;
u32 devicenumber;
u32 total_size; //size in sectors of the device
u32 res;
} mmcdevice;
#ifdef __cplusplus u32 sdmmc_sdcard_init();
extern "C" { int sdmmc_sdcard_readsectors(u32 sector_no, u32 numsectors, u8 *out);
#endif int sdmmc_sdcard_writesectors(u32 sector_no, u32 numsectors, const u8 *in);
int sdmmc_nand_readsectors(u32 sector_no, u32 numsectors, u8 *out);
typedef struct mmcdevice { int sdmmc_nand_writesectors(u32 sector_no, u32 numsectors, const u8 *in);
u8* rData; void sdmmc_get_cid(bool isNand, u32 *info);
const u8* tData; mmcdevice *getMMCDevice(int drive);
u32 size;
u32 error;
u16 stat0;
u16 stat1;
u32 ret[4];
u32 initarg;
u32 isSDHC;
u32 clk;
u32 SDOPT;
u32 devicenumber;
u32 total_size; //size in sectors of the device
u32 res;
} mmcdevice;
void sdmmc_init();
int sdmmc_sdcard_readsector(u32 sector_no, u8 *out);
int sdmmc_sdcard_readsectors(u32 sector_no, u32 numsectors, u8 *out);
int sdmmc_sdcard_writesector(u32 sector_no, const u8 *in);
int sdmmc_sdcard_writesectors(u32 sector_no, u32 numsectors, const u8 *in);
int sdmmc_nand_readsectors(u32 sector_no, u32 numsectors, u8 *out);
int sdmmc_nand_writesectors(u32 sector_no, u32 numsectors, const u8 *in);
int sdmmc_get_cid(bool isNand, u32 *info);
mmcdevice *getMMCDevice(int drive);
int Nand_Init();
int SD_Init();
u32 sdmmc_sdcard_init();
#ifdef __cplusplus
};
#endif
//---------------------------------------------------------------------------------
static inline u16 sdmmc_read16(u16 reg) {
//---------------------------------------------------------------------------------
return *(volatile u16*)(SDMMC_BASE + reg);
}
//---------------------------------------------------------------------------------
static inline void sdmmc_write16(u16 reg, u16 val) {
//---------------------------------------------------------------------------------
*(volatile u16*)(SDMMC_BASE + reg) = val;
}
//---------------------------------------------------------------------------------
static inline u32 sdmmc_read32(u16 reg) {
//---------------------------------------------------------------------------------
return *(volatile u32*)(SDMMC_BASE + reg);
}
//---------------------------------------------------------------------------------
static inline void sdmmc_write32(u16 reg, u32 val) {
//---------------------------------------------------------------------------------
*(volatile u32*)(SDMMC_BASE + reg) = val;
}
//---------------------------------------------------------------------------------
static inline void sdmmc_mask16(u16 reg, const u16 clear, const u16 set) {
//---------------------------------------------------------------------------------
u16 val = sdmmc_read16(reg);
val &= ~clear;
val |= set;
sdmmc_write16(reg, val);
}
static inline void setckl(u32 data)
{
sdmmc_write16(REG_SDCLKCTL, data & 0xFF);
sdmmc_write16(REG_SDCLKCTL, 1u<<8 | (data & 0x2FF));
}

View File

@ -1,11 +0,0 @@
.arm
.section .text.wait_cycles, "ax", %progbits
.align 2
.global wait_cycles
.type wait_cycles, %function
wait_cycles:
subs r0, #2
nop
bgt wait_cycles
bx lr