This repository has been archived on 2022-05-31. You can view files and clone it, but cannot push or open issues or pull requests.
Luma3DS-3GX/source/crypto.c
2016-03-05 00:01:54 +01:00

425 lines
10 KiB
C
Executable File

// From http://github.com/b1l1s/ctr
#include "crypto.h"
#include <stddef.h>
#include "memory.h"
#include "fatfs/sdmmc/sdmmc.h"
#include "fatfs/ff.h"
//Nand key#2 (0x12C10)
u8 key2[0x10] = {
0x42, 0x3F, 0x81, 0x7A, 0x23, 0x52, 0x58, 0x31, 0x6E, 0x75, 0x8E, 0x3A, 0x39, 0x43, 0x2E, 0xD0
};
/****************************************************************
* Crypto Libs
****************************************************************/
/* original version by megazig */
#ifndef __thumb__
#define BSWAP32(x) {\
__asm__\
(\
"eor r1, %1, %1, ror #16\n\t"\
"bic r1, r1, #0xFF0000\n\t"\
"mov %0, %1, ror #8\n\t"\
"eor %0, %0, r1, lsr #8\n\t"\
:"=r"(x)\
:"0"(x)\
:"r1"\
);\
};
#define ADD_u128_u32(u128_0, u128_1, u128_2, u128_3, u32_0) {\
__asm__\
(\
"adds %0, %4\n\t"\
"addcss %1, %1, #1\n\t"\
"addcss %2, %2, #1\n\t"\
"addcs %3, %3, #1\n\t"\
: "+r"(u128_0), "+r"(u128_1), "+r"(u128_2), "+r"(u128_3)\
: "r"(u32_0)\
: "cc"\
);\
}
#else
#define BSWAP32(x) {x = __builtin_bswap32(x);}
#define ADD_u128_u32(u128_0, u128_1, u128_2, u128_3, u32_0) {\
__asm__\
(\
"mov r4, #0\n\t"\
"add %0, %0, %4\n\t"\
"adc %1, %1, r4\n\t"\
"adc %2, %2, r4\n\t"\
"adc %3, %3, r4\n\t"\
: "+r"(u128_0), "+r"(u128_1), "+r"(u128_2), "+r"(u128_3)\
: "r"(u32_0)\
: "cc", "r4"\
);\
}
#endif /*__thumb__*/
void aes_setkey(u8 keyslot, const void* key, u32 keyType, u32 mode)
{
if(keyslot <= 0x03) return; // Ignore TWL keys for now
u32* key32 = (u32*)key;
*REG_AESCNT = (*REG_AESCNT & ~(AES_CNT_INPUT_ENDIAN | AES_CNT_INPUT_ORDER)) | mode;
*REG_AESKEYCNT = (*REG_AESKEYCNT >> 6 << 6) | keyslot | AES_KEYCNT_WRITE;
REG_AESKEYFIFO[keyType] = key32[0];
REG_AESKEYFIFO[keyType] = key32[1];
REG_AESKEYFIFO[keyType] = key32[2];
REG_AESKEYFIFO[keyType] = key32[3];
}
void aes_use_keyslot(u8 keyslot)
{
if(keyslot > 0x3F)
return;
*REG_AESKEYSEL = keyslot;
*REG_AESCNT = *REG_AESCNT | 0x04000000; /* mystery bit */
}
void aes_setiv(const void* iv, u32 mode)
{
const u32* iv32 = (const u32*)iv;
*REG_AESCNT = (*REG_AESCNT & ~(AES_CNT_INPUT_ENDIAN | AES_CNT_INPUT_ORDER)) | mode;
// Word order for IV can't be changed in REG_AESCNT and always default to reversed
if(mode & AES_INPUT_NORMAL)
{
REG_AESCTR[0] = iv32[3];
REG_AESCTR[1] = iv32[2];
REG_AESCTR[2] = iv32[1];
REG_AESCTR[3] = iv32[0];
}
else
{
REG_AESCTR[0] = iv32[0];
REG_AESCTR[1] = iv32[1];
REG_AESCTR[2] = iv32[2];
REG_AESCTR[3] = iv32[3];
}
}
void aes_advctr(void* ctr, u32 val, u32 mode)
{
u32* ctr32 = (u32*)ctr;
int i;
if(mode & AES_INPUT_BE)
{
for(i = 0; i < 4; ++i) // Endian swap
BSWAP32(ctr32[i]);
}
if(mode & AES_INPUT_NORMAL)
{
ADD_u128_u32(ctr32[3], ctr32[2], ctr32[1], ctr32[0], val);
}
else
{
ADD_u128_u32(ctr32[0], ctr32[1], ctr32[2], ctr32[3], val);
}
if(mode & AES_INPUT_BE)
{
for(i = 0; i < 4; ++i) // Endian swap
BSWAP32(ctr32[i]);
}
}
void aes_change_ctrmode(void* ctr, u32 fromMode, u32 toMode)
{
u32* ctr32 = (u32*)ctr;
int i;
if((fromMode ^ toMode) & AES_CNT_INPUT_ENDIAN)
{
for(i = 0; i < 4; ++i)
BSWAP32(ctr32[i]);
}
if((fromMode ^ toMode) & AES_CNT_INPUT_ORDER)
{
u32 temp = ctr32[0];
ctr32[0] = ctr32[3];
ctr32[3] = temp;
temp = ctr32[1];
ctr32[1] = ctr32[2];
ctr32[2] = temp;
}
}
void aes_batch(void* dst, const void* src, u32 blockCount)
{
*REG_AESBLKCNT = blockCount << 16;
*REG_AESCNT |= AES_CNT_START;
const u32* src32 = (const u32*)src;
u32* dst32 = (u32*)dst;
u32 wbc = blockCount;
u32 rbc = blockCount;
while(rbc)
{
if(wbc && ((*REG_AESCNT & 0x1F) <= 0xC)) // There's space for at least 4 ints
{
*REG_AESWRFIFO = *src32++;
*REG_AESWRFIFO = *src32++;
*REG_AESWRFIFO = *src32++;
*REG_AESWRFIFO = *src32++;
wbc--;
}
if(rbc && ((*REG_AESCNT & (0x1F << 0x5)) >= (0x4 << 0x5))) // At least 4 ints available for read
{
*dst32++ = *REG_AESRDFIFO;
*dst32++ = *REG_AESRDFIFO;
*dst32++ = *REG_AESRDFIFO;
*dst32++ = *REG_AESRDFIFO;
rbc--;
}
}
}
void aes(void* dst, const void* src, u32 blockCount, void* iv, u32 mode, u32 ivMode)
{
*REG_AESCNT = mode |
AES_CNT_INPUT_ORDER | AES_CNT_OUTPUT_ORDER |
AES_CNT_INPUT_ENDIAN | AES_CNT_OUTPUT_ENDIAN |
AES_CNT_FLUSH_READ | AES_CNT_FLUSH_WRITE;
u32 blocks;
while(blockCount != 0)
{
if((mode & AES_ALL_MODES) != AES_ECB_ENCRYPT_MODE
&& (mode & AES_ALL_MODES) != AES_ECB_DECRYPT_MODE)
aes_setiv(iv, ivMode);
blocks = (blockCount >= 0xFFFF) ? 0xFFFF : blockCount;
// Save the last block for the next decryption CBC batch's iv
if((mode & AES_ALL_MODES) == AES_CBC_DECRYPT_MODE)
{
memcpy(iv, src + (blocks - 1) * AES_BLOCK_SIZE, AES_BLOCK_SIZE);
aes_change_ctrmode(iv, AES_INPUT_BE | AES_INPUT_NORMAL, ivMode);
}
// Process the current batch
aes_batch(dst, src, blocks);
// Save the last block for the next encryption CBC batch's iv
if((mode & AES_ALL_MODES) == AES_CBC_ENCRYPT_MODE)
{
memcpy(iv, dst + (blocks - 1) * AES_BLOCK_SIZE, AES_BLOCK_SIZE);
aes_change_ctrmode(iv, AES_INPUT_BE | AES_INPUT_NORMAL, ivMode);
}
// Advance counter for CTR mode
else if((mode & AES_ALL_MODES) == AES_CTR_MODE)
aes_advctr(iv, blocks, ivMode);
src += blocks * AES_BLOCK_SIZE;
dst += blocks * AES_BLOCK_SIZE;
blockCount -= blocks;
}
}
void sha_wait_idle()
{
while(*REG_SHA_CNT & 1);
}
void sha(void* res, const void* src, u32 size, u32 mode)
{
sha_wait_idle();
*REG_SHA_CNT = mode | SHA_CNT_OUTPUT_ENDIAN | SHA_NORMAL_ROUND;
const u32* src32 = (const u32*)src;
int i;
while(size >= 0x40)
{
sha_wait_idle();
for(i = 0; i < 4; ++i)
{
*REG_SHA_INFIFO = *src32++;
*REG_SHA_INFIFO = *src32++;
*REG_SHA_INFIFO = *src32++;
*REG_SHA_INFIFO = *src32++;
}
size -= 0x40;
}
sha_wait_idle();
memcpy((void*)REG_SHA_INFIFO, src32, size);
*REG_SHA_CNT = (*REG_SHA_CNT & ~SHA_NORMAL_ROUND) | SHA_FINAL_ROUND;
while(*REG_SHA_CNT & SHA_FINAL_ROUND);
sha_wait_idle();
u32 hashSize = SHA_256_HASH_SIZE;
if(mode == SHA_224_MODE)
hashSize = SHA_224_HASH_SIZE;
else if(mode == SHA_1_MODE)
hashSize = SHA_1_HASH_SIZE;
memcpy(res, (void*)REG_SHA_HASH, hashSize);
}
void rsa_wait_idle()
{
while(*REG_RSA_CNT & 1);
}
void rsa_use_keyslot(u32 keyslot)
{
*REG_RSA_CNT = (*REG_RSA_CNT & ~RSA_CNT_KEYSLOTS) | (keyslot << 4);
}
void rsa_setkey(u32 keyslot, const void* mod, const void* exp, u32 mode)
{
rsa_wait_idle();
*REG_RSA_CNT = (*REG_RSA_CNT & ~RSA_CNT_KEYSLOTS) | (keyslot << 4) | RSA_IO_BE | RSA_IO_NORMAL;
u32 size = mode * 4;
volatile u32* keyslotCnt = REG_RSA_SLOT0 + (keyslot << 4);
keyslotCnt[0] &= ~(RSA_SLOTCNT_KEY_SET | RSA_SLOTCNT_WPROTECT);
keyslotCnt[1] = mode;
memcpy((void*)REG_RSA_MOD_END - size, mod, size);
if(exp == NULL)
{
size -= 4;
while(size)
{
*REG_RSA_EXPFIFO = 0;
size -= 4;
}
*REG_RSA_EXPFIFO = 0x01000100; // 0x00010001 byteswapped
}
else
{
const u32* exp32 = (const u32*)exp;
while(size)
{
*REG_RSA_EXPFIFO = *exp32++;
size -= 4;
}
}
}
int rsa_iskeyset(u32 keyslot)
{
return *(REG_RSA_SLOT0 + (keyslot << 4)) & 1;
}
void rsa(void* dst, const void* src, u32 size)
{
u32 keyslot = (*REG_RSA_CNT & RSA_CNT_KEYSLOTS) >> 4;
if(rsa_iskeyset(keyslot) == 0)
return;
rsa_wait_idle();
*REG_RSA_CNT |= RSA_IO_BE | RSA_IO_NORMAL;
// Pad the message with zeroes so that it's a multiple of 8
// and write the message with the end aligned with the register
u32 padSize = ((size + 7) & ~7) - size;
memset((void*)REG_RSA_TXT_END - (size + padSize), 0, padSize);
memcpy((void*)REG_RSA_TXT_END - size, src, size);
// Start
*REG_RSA_CNT |= RSA_CNT_START;
rsa_wait_idle();
memcpy(dst, (void*)REG_RSA_TXT_END - size, size);
}
int rsa_verify(const void* data, u32 size, const void* sig, u32 mode)
{
u8 dataHash[SHA_256_HASH_SIZE];
sha(dataHash, data, size, SHA_256_MODE);
u8 decSig[0x100]; // Way too big, need to request a work area
u32 sigSize = mode * 4;
rsa(decSig, sig, sigSize);
return memcmp(dataHash, decSig + (sigSize - SHA_256_HASH_SIZE), SHA_256_HASH_SIZE) == 0;
}
/****************************************************************
* Nand/FIRM Crypto stuff
****************************************************************/
//Get Nand CTR key
void getNandCTR(u8 *buf, u8 console) {
u8 *addr = console ? (u8*)0x080D8BBC : (u8*)0x080D797C;
u8 keyLen = 0x10; //CTR length
addr += 0x0F;
while (keyLen --) { *(buf++) = *(addr--); }
}
//Read firm0 from NAND and write to buffer
void nandFirm0(u8 *outbuf, const u32 size, u8 console){
u8 CTR[0x10];
getNandCTR(CTR, console);
aes_advctr(CTR, 0x0B130000/0x10, AES_INPUT_BE | AES_INPUT_NORMAL);
sdmmc_nand_readsectors(0x0B130000 / 0x200, size / 0x200, outbuf);
aes_use_keyslot(0x06);
aes(outbuf, outbuf, size / AES_BLOCK_SIZE, CTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL);
}
//Decrypts the N3DS arm9bin
void decArm9Bin(void *armHdr, u8 mode){
//Firm keys
u8 keyX[0x10];
u8 keyY[0x10];
u8 CTR[0x10];
u32 slot = mode ? 0x16 : 0x15;
//Setup keys needed for arm9bin decryption
memcpy((u8*)keyY, (void *)(armHdr+0x10), 0x10);
memcpy((u8*)CTR, (void *)(armHdr+0x20), 0x10);
u32 size = atoi((void *)(armHdr+0x30));
if(mode){
//Set 0x11 to key2 for the arm9bin and misc keys
aes_setkey(0x11, (u8*)key2, AES_KEYNORMAL, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_use_keyslot(0x11);
aes((u8*)keyX, (void *)(armHdr+0x60), 1, NULL, AES_ECB_DECRYPT_MODE, 0);
aes_setkey(slot, (u8*)keyX, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL);
}
aes_setkey(slot, (u8*)keyY, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_setiv((u8*)CTR, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_use_keyslot(slot);
//Decrypt arm9bin
aes((void *)(armHdr+0x800), (void *)(armHdr+0x800), size/AES_BLOCK_SIZE, CTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL);
}
//Sets the N3DS 9.6 KeyXs
void setKeyXs(void *armHdr){
//Set keys 0x19..0x1F keyXs
u8* decKey = (void *)(armHdr+0x89824);
aes_setkey(0x11, (u8*)key2, AES_KEYNORMAL, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_use_keyslot(0x11);
for(u32 slot = 0x19; slot < 0x20; slot++){
aes(decKey, (void *)(armHdr+0x89814), 1, NULL, AES_ECB_DECRYPT_MODE, 0);
aes_setkey(slot, (u8*)decKey, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL);
*(u8*)(armHdr+0x89814+0xF) += 1;
}
}