This repository has been archived on 2022-05-31. You can view files and clone it, but cannot push or open issues or pull requests.
Luma3DS-3GX/source/crypto.c

469 lines
14 KiB
C
Executable File

/*
* This file is part of Luma3DS
* Copyright (C) 2016 Aurora Wright, TuxSH
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Additional Terms 7.b of GPLv3 applies to this file: Requiring preservation of specified
* reasonable legal notices or author attributions in that material or in the Appropriate Legal
* Notices displayed by works containing it.
*/
/*
* Crypto libs from http://github.com/b1l1s/ctr
*/
#include "crypto.h"
#include "memory.h"
#include "fatfs/sdmmc/sdmmc.h"
/****************************************************************
* Crypto libs
****************************************************************/
/* original version by megazig */
#ifndef __thumb__
#define BSWAP32(x) {\
__asm__\
(\
"eor r1, %1, %1, ror #16\n\t"\
"bic r1, r1, #0xFF0000\n\t"\
"mov %0, %1, ror #8\n\t"\
"eor %0, %0, r1, lsr #8\n\t"\
:"=r"(x)\
:"0"(x)\
:"r1"\
);\
};
#define ADD_u128_u32(u128_0, u128_1, u128_2, u128_3, u32_0) {\
__asm__\
(\
"adds %0, %4\n\t"\
"addcss %1, %1, #1\n\t"\
"addcss %2, %2, #1\n\t"\
"addcs %3, %3, #1\n\t"\
: "+r"(u128_0), "+r"(u128_1), "+r"(u128_2), "+r"(u128_3)\
: "r"(u32_0)\
: "cc"\
);\
}
#else
#define BSWAP32(x) {x = __builtin_bswap32(x);}
#define ADD_u128_u32(u128_0, u128_1, u128_2, u128_3, u32_0) {\
__asm__\
(\
"mov r4, #0\n\t"\
"add %0, %0, %4\n\t"\
"adc %1, %1, r4\n\t"\
"adc %2, %2, r4\n\t"\
"adc %3, %3, r4\n\t"\
: "+r"(u128_0), "+r"(u128_1), "+r"(u128_2), "+r"(u128_3)\
: "r"(u32_0)\
: "cc", "r4"\
);\
}
#endif /*__thumb__*/
static void aes_setkey(u8 keyslot, const void *key, u32 keyType, u32 mode)
{
if(keyslot <= 0x03) return; // Ignore TWL keys for now
u32 *key32 = (u32 *)key;
*REG_AESCNT = (*REG_AESCNT & ~(AES_CNT_INPUT_ENDIAN | AES_CNT_INPUT_ORDER)) | mode;
*REG_AESKEYCNT = (*REG_AESKEYCNT >> 6 << 6) | keyslot | AES_KEYCNT_WRITE;
REG_AESKEYFIFO[keyType] = key32[0];
REG_AESKEYFIFO[keyType] = key32[1];
REG_AESKEYFIFO[keyType] = key32[2];
REG_AESKEYFIFO[keyType] = key32[3];
}
static void aes_use_keyslot(u8 keyslot)
{
if(keyslot > 0x3F)
return;
*REG_AESKEYSEL = keyslot;
*REG_AESCNT = *REG_AESCNT | 0x04000000; /* mystery bit */
}
static void aes_setiv(const void *iv, u32 mode)
{
const u32 *iv32 = (const u32 *)iv;
*REG_AESCNT = (*REG_AESCNT & ~(AES_CNT_INPUT_ENDIAN | AES_CNT_INPUT_ORDER)) | mode;
// Word order for IV can't be changed in REG_AESCNT and always default to reversed
if(mode & AES_INPUT_NORMAL)
{
REG_AESCTR[0] = iv32[3];
REG_AESCTR[1] = iv32[2];
REG_AESCTR[2] = iv32[1];
REG_AESCTR[3] = iv32[0];
}
else
{
REG_AESCTR[0] = iv32[0];
REG_AESCTR[1] = iv32[1];
REG_AESCTR[2] = iv32[2];
REG_AESCTR[3] = iv32[3];
}
}
static void aes_advctr(void *ctr, u32 val, u32 mode)
{
u32 *ctr32 = (u32 *)ctr;
int i;
if(mode & AES_INPUT_BE)
{
for(i = 0; i < 4; ++i) // Endian swap
BSWAP32(ctr32[i]);
}
if(mode & AES_INPUT_NORMAL)
{
ADD_u128_u32(ctr32[3], ctr32[2], ctr32[1], ctr32[0], val);
}
else
{
ADD_u128_u32(ctr32[0], ctr32[1], ctr32[2], ctr32[3], val);
}
if(mode & AES_INPUT_BE)
{
for(i = 0; i < 4; ++i) // Endian swap
BSWAP32(ctr32[i]);
}
}
static void aes_change_ctrmode(void *ctr, u32 fromMode, u32 toMode)
{
u32 *ctr32 = (u32 *)ctr;
int i;
if((fromMode ^ toMode) & AES_CNT_INPUT_ENDIAN)
{
for(i = 0; i < 4; ++i)
BSWAP32(ctr32[i]);
}
if((fromMode ^ toMode) & AES_CNT_INPUT_ORDER)
{
u32 temp = ctr32[0];
ctr32[0] = ctr32[3];
ctr32[3] = temp;
temp = ctr32[1];
ctr32[1] = ctr32[2];
ctr32[2] = temp;
}
}
static void aes_batch(void *dst, const void *src, u32 blockCount)
{
*REG_AESBLKCNT = blockCount << 16;
*REG_AESCNT |= AES_CNT_START;
const u32 *src32 = (const u32 *)src;
u32 *dst32 = (u32 *)dst;
u32 wbc = blockCount;
u32 rbc = blockCount;
while(rbc)
{
if(wbc && ((*REG_AESCNT & 0x1F) <= 0xC)) // There's space for at least 4 ints
{
*REG_AESWRFIFO = *src32++;
*REG_AESWRFIFO = *src32++;
*REG_AESWRFIFO = *src32++;
*REG_AESWRFIFO = *src32++;
wbc--;
}
if(rbc && ((*REG_AESCNT & (0x1F << 0x5)) >= (0x4 << 0x5))) // At least 4 ints available for read
{
*dst32++ = *REG_AESRDFIFO;
*dst32++ = *REG_AESRDFIFO;
*dst32++ = *REG_AESRDFIFO;
*dst32++ = *REG_AESRDFIFO;
rbc--;
}
}
}
static void aes(void *dst, const void *src, u32 blockCount, void *iv, u32 mode, u32 ivMode)
{
*REG_AESCNT = mode |
AES_CNT_INPUT_ORDER | AES_CNT_OUTPUT_ORDER |
AES_CNT_INPUT_ENDIAN | AES_CNT_OUTPUT_ENDIAN |
AES_CNT_FLUSH_READ | AES_CNT_FLUSH_WRITE;
u32 blocks;
while(blockCount != 0)
{
if((mode & AES_ALL_MODES) != AES_ECB_ENCRYPT_MODE
&& (mode & AES_ALL_MODES) != AES_ECB_DECRYPT_MODE)
aes_setiv(iv, ivMode);
blocks = (blockCount >= 0xFFFF) ? 0xFFFF : blockCount;
// Save the last block for the next decryption CBC batch's iv
if((mode & AES_ALL_MODES) == AES_CBC_DECRYPT_MODE)
{
memcpy(iv, src + (blocks - 1) * AES_BLOCK_SIZE, AES_BLOCK_SIZE);
aes_change_ctrmode(iv, AES_INPUT_BE | AES_INPUT_NORMAL, ivMode);
}
// Process the current batch
aes_batch(dst, src, blocks);
// Save the last block for the next encryption CBC batch's iv
if((mode & AES_ALL_MODES) == AES_CBC_ENCRYPT_MODE)
{
memcpy(iv, dst + (blocks - 1) * AES_BLOCK_SIZE, AES_BLOCK_SIZE);
aes_change_ctrmode(iv, AES_INPUT_BE | AES_INPUT_NORMAL, ivMode);
}
// Advance counter for CTR mode
else if((mode & AES_ALL_MODES) == AES_CTR_MODE)
aes_advctr(iv, blocks, ivMode);
src += blocks * AES_BLOCK_SIZE;
dst += blocks * AES_BLOCK_SIZE;
blockCount -= blocks;
}
}
static void sha_wait_idle()
{
while(*REG_SHA_CNT & 1);
}
static void sha(void *res, const void *src, u32 size, u32 mode)
{
sha_wait_idle();
*REG_SHA_CNT = mode | SHA_CNT_OUTPUT_ENDIAN | SHA_NORMAL_ROUND;
const u32 *src32 = (const u32 *)src;
int i;
while(size >= 0x40)
{
sha_wait_idle();
for(i = 0; i < 4; ++i)
{
*REG_SHA_INFIFO = *src32++;
*REG_SHA_INFIFO = *src32++;
*REG_SHA_INFIFO = *src32++;
*REG_SHA_INFIFO = *src32++;
}
size -= 0x40;
}
sha_wait_idle();
memcpy((void *)REG_SHA_INFIFO, src32, size);
*REG_SHA_CNT = (*REG_SHA_CNT & ~SHA_NORMAL_ROUND) | SHA_FINAL_ROUND;
while(*REG_SHA_CNT & SHA_FINAL_ROUND);
sha_wait_idle();
u32 hashSize = SHA_256_HASH_SIZE;
if(mode == SHA_224_MODE)
hashSize = SHA_224_HASH_SIZE;
else if(mode == SHA_1_MODE)
hashSize = SHA_1_HASH_SIZE;
memcpy(res, (void *)REG_SHA_HASH, hashSize);
}
/****************************************************************
* NAND/FIRM crypto
****************************************************************/
static u8 __attribute__((aligned(4))) nandCTR[0x10];
static u8 nandSlot;
static u32 fatStart;
//Initialize the CTRNAND crypto
void ctrNandInit(void)
{
u8 __attribute__((aligned(4))) cid[0x10];
u8 __attribute__((aligned(4))) shaSum[0x20];
sdmmc_get_cid(1, (u32 *)cid);
sha(shaSum, cid, 0x10, SHA_256_MODE);
memcpy(nandCTR, shaSum, 0x10);
if(isN3DS)
{
u8 __attribute__((aligned(4))) keyY0x5[0x10] = {0x4D, 0x80, 0x4F, 0x4E, 0x99, 0x90, 0x19, 0x46, 0x13, 0xA2, 0x04, 0xAC, 0x58, 0x44, 0x60, 0xBE};
aes_setkey(0x05, keyY0x5, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL);
nandSlot = 0x05;
fatStart = 0x5CAD7;
}
else
{
nandSlot = 0x04;
fatStart = 0x5CAE5;
}
}
//Read and decrypt from the selected CTRNAND
u32 ctrNandRead(u32 sector, u32 sectorCount, u8 *outbuf)
{
u8 __attribute__((aligned(4))) tmpCTR[0x10];
memcpy(tmpCTR, nandCTR, 0x10);
aes_advctr(tmpCTR, ((sector + fatStart) * 0x200) / AES_BLOCK_SIZE, AES_INPUT_BE | AES_INPUT_NORMAL);
//Read
u32 result;
if(firmSource == FIRMWARE_SYSNAND)
result = sdmmc_nand_readsectors(sector + fatStart, sectorCount, outbuf);
else
{
sector += emuOffset;
result = sdmmc_sdcard_readsectors(sector + fatStart, sectorCount, outbuf);
}
//Decrypt
aes_use_keyslot(nandSlot);
aes(outbuf, outbuf, sectorCount * 0x200 / AES_BLOCK_SIZE, tmpCTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL);
return result;
}
//Sets the 7.x NCCH KeyX and the 6.x gamecard save data KeyY
void setRSAMod0DerivedKeys(void)
{
if(!isDevUnit)
{
const u8 __attribute__((aligned(4))) keyX0x25[0x10] = {0xCE, 0xE7, 0xD8, 0xAB, 0x30, 0xC0, 0x0D, 0xAE, 0x85, 0x0E, 0xF5, 0xE3, 0x82, 0xAC, 0x5A, 0xF3};
const u8 __attribute__((aligned(4))) keyY0x2F[0x10] = {0xC3, 0x69, 0xBA, 0xA2, 0x1E, 0x18, 0x8A, 0x88, 0xA9, 0xAA, 0x94, 0xE5, 0x50, 0x6A, 0x9F, 0x16};
aes_setkey(0x25, keyX0x25, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_setkey(0x2F, keyY0x2F, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL);
/* [3dbrew] The first 0x10-bytes are checked by the v6.0/v7.0 NATIVE_FIRM keyinit function,
when non-zero it clears this block and continues to do the key generation.
Otherwise when this block was already all-zero, it immediately returns. */
memset32((void *)0x01FFCD00, 0, 0x10);
}
}
//Decrypt a FIRM ExeFS
void decryptExeFs(u8 *inbuf)
{
u8 *exeFsOffset = inbuf + *(u32 *)(inbuf + 0x1A0) * 0x200;
u32 exeFsSize = *(u32 *)(inbuf + 0x1A4) * 0x200;
u8 ncchCTR[0x10] = {0};
for(u32 i = 0; i < 8; i++)
ncchCTR[7 - i] = *(inbuf + 0x108 + i);
ncchCTR[8] = 2;
aes_setkey(0x2C, inbuf, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_setiv(ncchCTR, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_use_keyslot(0x2C);
aes(inbuf - 0x200, exeFsOffset, exeFsSize / AES_BLOCK_SIZE, ncchCTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL);
}
/* ARM9Loader replacement
Originally adapted from: https://github.com/Reisyukaku/ReiNand/blob/228c378255ba693133dec6f3368e14d386f2cde7/source/crypto.c#L233 */
void arm9Loader(u8 *arm9Section)
{
//Determine the arm9loader version
u32 a9lVersion;
switch(arm9Section[0x53])
{
case 0xFF:
a9lVersion = 0;
break;
case '1':
a9lVersion = 1;
break;
default:
a9lVersion = 2;
break;
}
//Firm keys
u8 __attribute__((aligned(4))) keyY[0x10];
u8 __attribute__((aligned(4))) arm9BinCTR[0x10];
u8 arm9BinSlot = a9lVersion ? 0x16 : 0x15;
//Setup keys needed for arm9bin decryption
memcpy(keyY, arm9Section + 0x10, 0x10);
memcpy(arm9BinCTR, arm9Section + 0x20, 0x10);
//Calculate the size of the ARM9 binary
u32 arm9BinSize = 0;
//http://stackoverflow.com/questions/12791077/atoi-implementation-in-c
for(u8 *tmp = arm9Section + 0x30; *tmp; tmp++)
arm9BinSize = (arm9BinSize << 3) + (arm9BinSize << 1) + *tmp - '0';
if(a9lVersion)
{
u8 __attribute__((aligned(4))) keyX[0x10];
if(!isDevUnit)
{
const u8 __attribute__((aligned(4))) key1[0x10] = {0x07, 0x29, 0x44, 0x38, 0xF8, 0xC9, 0x75, 0x93, 0xAA, 0x0E, 0x4A, 0xB4, 0xAE, 0x84, 0xC1, 0xD8};
const u8 __attribute__((aligned(4))) key2[0x10] = {0x42, 0x3F, 0x81, 0x7A, 0x23, 0x52, 0x58, 0x31, 0x6E, 0x75, 0x8E, 0x3A, 0x39, 0x43, 0x2E, 0xD0};
aes_setkey(0x11, a9lVersion == 2 ? key2 : key1, AES_KEYNORMAL, AES_INPUT_BE | AES_INPUT_NORMAL);
}
aes_use_keyslot(0x11);
aes(keyX, arm9Section + 0x60, 1, NULL, AES_ECB_DECRYPT_MODE, 0);
aes_setkey(arm9BinSlot, keyX, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL);
}
aes_setkey(arm9BinSlot, keyY, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_setiv(arm9BinCTR, AES_INPUT_BE | AES_INPUT_NORMAL);
aes_use_keyslot(arm9BinSlot);
//Decrypt arm9bin
aes(arm9Section + 0x800, arm9Section + 0x800, arm9BinSize / AES_BLOCK_SIZE, arm9BinCTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL);
//Set >=9.6 KeyXs
if(a9lVersion == 2 && !isDevUnit)
{
u8 __attribute__((aligned(4))) keyData[0x10] = {0xDD, 0xDA, 0xA4, 0xC6, 0x2C, 0xC4, 0x50, 0xE9, 0xDA, 0xB6, 0x9B, 0x0D, 0x9D, 0x2A, 0x21, 0x98};
u8 __attribute__((aligned(4))) decKey[0x10];
//Set keys 0x19..0x1F keyXs
aes_use_keyslot(0x11);
for(u8 slot = 0x19; slot < 0x20; slot++, keyData[0xF]++)
{
aes(decKey, keyData, 1, NULL, AES_ECB_DECRYPT_MODE, 0);
aes_setkey(slot, decKey, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL);
}
}
}
void computePinHash(u8 *out, u8 *in)
{
u8 __attribute__((aligned(4))) cid[0x10];
u8 __attribute__((aligned(4))) cipherText[0x10];
sdmmc_get_cid(1, (u32 *)cid);
aes_use_keyslot(4); //Console-unique keyslot whose keys are set by the ARM9 bootROM
aes(cipherText, in, 1, cid, AES_CBC_ENCRYPT_MODE, AES_INPUT_BE | AES_INPUT_NORMAL);
sha(out, cipherText, 0x10, SHA_256_MODE);
}