This repository has been archived on 2022-05-31. You can view files and clone it, but cannot push or open issues or pull requests.
Luma3DS-3GX/source/fatfs/sdmmc/sdmmc.c
2019-02-28 19:04:11 +01:00

619 lines
18 KiB
C

/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Copyright (c) 2014-2015, Normmatt
*
* Alternatively, the contents of this file may be used under the terms
* of the GNU General Public License Version 2, as described below:
*
* This file is free software: you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 2 of the License, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
#include <stdint.h>
#include <stdbool.h>
#include "wait_cycles.h"
#include "sdmmc.h"
#define DATA32_SUPPORT
struct mmcdevice handleNAND;
struct mmcdevice handleSD;
mmcdevice *getMMCDevice(int drive)
{
if(drive==0) return &handleNAND;
return &handleSD;
}
static int get_error(struct mmcdevice *ctx)
{
return (int)((ctx->error << 29) >> 31);
}
static void set_target(struct mmcdevice *ctx)
{
sdmmc_mask16(REG_SDPORTSEL,0x3,(u16)ctx->devicenumber);
setckl(ctx->clk);
if(ctx->SDOPT == 0)
{
sdmmc_mask16(REG_SDOPT,0,0x8000);
}
else
{
sdmmc_mask16(REG_SDOPT,0x8000,0);
}
}
static void sdmmc_send_command(struct mmcdevice *ctx, u32 cmd, u32 args)
{
const bool getSDRESP = (cmd << 15) >> 31;
u16 flags = (cmd << 15) >> 31;
const bool readdata = cmd & 0x20000;
const bool writedata = cmd & 0x40000;
if(readdata || writedata)
{
flags |= TMIO_STAT0_DATAEND;
}
ctx->error = 0;
while((sdmmc_read16(REG_SDSTATUS1) & TMIO_STAT1_CMD_BUSY)); //mmc working?
sdmmc_write16(REG_SDIRMASK0,0);
sdmmc_write16(REG_SDIRMASK1,0);
sdmmc_write16(REG_SDSTATUS0,0);
sdmmc_write16(REG_SDSTATUS1,0);
sdmmc_mask16(REG_DATACTL32,0x1800,0x400); // Disable TX32RQ and RX32RDY IRQ. Clear fifo.
sdmmc_write16(REG_SDCMDARG0,args &0xFFFF);
sdmmc_write16(REG_SDCMDARG1,args >> 16);
sdmmc_write16(REG_SDCMD,cmd &0xFFFF);
u32 size = ctx->size;
const u16 blkSize = sdmmc_read16(REG_SDBLKLEN32);
u32 *rDataPtr32 = (u32*)(void*)ctx->rData;
u8 *rDataPtr8 = ctx->rData;
const u32 *tDataPtr32 = (u32*)(void*)ctx->tData;
const u8 *tDataPtr8 = ctx->tData;
bool rUseBuf = ( NULL != rDataPtr32 );
bool tUseBuf = ( NULL != tDataPtr32 );
u16 status0 = 0;
while(1)
{
volatile u16 status1 = sdmmc_read16(REG_SDSTATUS1);
#ifdef DATA32_SUPPORT
volatile u16 ctl32 = sdmmc_read16(REG_DATACTL32);
if((ctl32 & 0x100))
#else
if((status1 & TMIO_STAT1_RXRDY))
#endif
{
if(readdata)
{
if(rUseBuf)
{
sdmmc_mask16(REG_SDSTATUS1, TMIO_STAT1_RXRDY, 0);
if(size >= blkSize)
{
#ifdef DATA32_SUPPORT
if(!((u32)rDataPtr32 & 3))
{
for(u32 i = 0; i < blkSize; i += 4)
{
*rDataPtr32++ = sdmmc_read32(REG_SDFIFO32);
}
}
else
{
for(u32 i = 0; i < blkSize; i += 4)
{
u32 data = sdmmc_read32(REG_SDFIFO32);
*rDataPtr8++ = data;
*rDataPtr8++ = data >> 8;
*rDataPtr8++ = data >> 16;
*rDataPtr8++ = data >> 24;
}
}
#else
if(!((u32)rDataPtr16 & 1))
{
for(u32 i = 0; i < blkSize; i += 4)
{
*rDataPtr16++ = sdmmc_read16(REG_SDFIFO);
}
}
else
{
for(u32 i = 0; i < blkSize; i += 4)
{
u16 data = sdmmc_read16(REG_SDFIFO);
*rDataPtr8++ = data;
*rDataPtr8++ = data >> 8;
}
}
#endif
size -= blkSize;
}
}
sdmmc_mask16(REG_DATACTL32, 0x800, 0);
}
}
#ifdef DATA32_SUPPORT
if(!(ctl32 & 0x200))
#else
if((status1 & TMIO_STAT1_TXRQ))
#endif
{
if(writedata)
{
if(tUseBuf)
{
sdmmc_mask16(REG_SDSTATUS1, TMIO_STAT1_TXRQ, 0);
if(size >= blkSize)
{
#ifdef DATA32_SUPPORT
if(!((u32)tDataPtr32 & 3))
{
for(u32 i = 0; i < blkSize; i += 4)
{
sdmmc_write32(REG_SDFIFO32, *tDataPtr32++);
}
}
else
{
for(u32 i = 0; i < blkSize; i += 4)
{
u32 data = *tDataPtr8++;
data |= (u32)*tDataPtr8++ << 8;
data |= (u32)*tDataPtr8++ << 16;
data |= (u32)*tDataPtr8++ << 24;
sdmmc_write32(REG_SDFIFO32, data);
}
}
#else
if(!((u32)tDataPtr16 & 1))
{
for(u32 i = 0; i < blkSize; i += 2)
{
sdmmc_write16(REG_SDFIFO, *tDataPtr16++);
}
}
else
{
for(u32 i = 0; i < blkSize; i += 2)
{
u16 data = *tDataPtr8++;
data |= (u16)(*tDataPtr8++ << 8);
sdmmc_write16(REG_SDFIFO, data);
}
}
#endif
size -= blkSize;
}
}
sdmmc_mask16(REG_DATACTL32, 0x1000, 0);
}
}
if(status1 & TMIO_MASK_GW)
{
ctx->error |= 4;
break;
}
if(!(status1 & TMIO_STAT1_CMD_BUSY))
{
status0 = sdmmc_read16(REG_SDSTATUS0);
if(sdmmc_read16(REG_SDSTATUS0) & TMIO_STAT0_CMDRESPEND)
{
ctx->error |= 0x1;
}
if(status0 & TMIO_STAT0_DATAEND)
{
ctx->error |= 0x2;
}
if((status0 & flags) == flags)
break;
}
}
ctx->stat0 = sdmmc_read16(REG_SDSTATUS0);
ctx->stat1 = sdmmc_read16(REG_SDSTATUS1);
sdmmc_write16(REG_SDSTATUS0,0);
sdmmc_write16(REG_SDSTATUS1,0);
if(getSDRESP != 0)
{
ctx->ret[0] = (u32)(sdmmc_read16(REG_SDRESP0) | (sdmmc_read16(REG_SDRESP1) << 16));
ctx->ret[1] = (u32)(sdmmc_read16(REG_SDRESP2) | (sdmmc_read16(REG_SDRESP3) << 16));
ctx->ret[2] = (u32)(sdmmc_read16(REG_SDRESP4) | (sdmmc_read16(REG_SDRESP5) << 16));
ctx->ret[3] = (u32)(sdmmc_read16(REG_SDRESP6) | (sdmmc_read16(REG_SDRESP7) << 16));
}
}
int sdmmc_sdcard_writesectors(u32 sector_no, u32 numsectors, const u8 *in)
{
if(handleSD.isSDHC == 0) sector_no <<= 9;
set_target(&handleSD);
sdmmc_write16(REG_SDSTOP,0x100);
#ifdef DATA32_SUPPORT
sdmmc_write16(REG_SDBLKCOUNT32,numsectors);
sdmmc_write16(REG_SDBLKLEN32,0x200);
#endif
sdmmc_write16(REG_SDBLKCOUNT,numsectors);
handleSD.tData = in;
handleSD.size = numsectors << 9;
sdmmc_send_command(&handleSD,0x52C19,sector_no);
return get_error(&handleSD);
}
int sdmmc_sdcard_readsectors(u32 sector_no, u32 numsectors, u8 *out)
{
if(handleSD.isSDHC == 0) sector_no <<= 9;
set_target(&handleSD);
sdmmc_write16(REG_SDSTOP,0x100);
#ifdef DATA32_SUPPORT
sdmmc_write16(REG_SDBLKCOUNT32,numsectors);
sdmmc_write16(REG_SDBLKLEN32,0x200);
#endif
sdmmc_write16(REG_SDBLKCOUNT,numsectors);
handleSD.rData = out;
handleSD.size = numsectors << 9;
sdmmc_send_command(&handleSD,0x33C12,sector_no);
return get_error(&handleSD);
}
int sdmmc_nand_readsectors(u32 sector_no, u32 numsectors, u8 *out)
{
if(handleNAND.isSDHC == 0) sector_no <<= 9;
set_target(&handleNAND);
sdmmc_write16(REG_SDSTOP,0x100);
#ifdef DATA32_SUPPORT
sdmmc_write16(REG_SDBLKCOUNT32,numsectors);
sdmmc_write16(REG_SDBLKLEN32,0x200);
#endif
sdmmc_write16(REG_SDBLKCOUNT,numsectors);
handleNAND.rData = out;
handleNAND.size = numsectors << 9;
sdmmc_send_command(&handleNAND,0x33C12,sector_no);
return get_error(&handleNAND);
}
int sdmmc_nand_writesectors(u32 sector_no, u32 numsectors, const u8 *in) //experimental
{
if(handleNAND.isSDHC == 0) sector_no <<= 9;
set_target(&handleNAND);
sdmmc_write16(REG_SDSTOP,0x100);
#ifdef DATA32_SUPPORT
sdmmc_write16(REG_SDBLKCOUNT32,numsectors);
sdmmc_write16(REG_SDBLKLEN32,0x200);
#endif
sdmmc_write16(REG_SDBLKCOUNT,numsectors);
handleNAND.tData = in;
handleNAND.size = numsectors << 9;
sdmmc_send_command(&handleNAND,0x52C19,sector_no);
return get_error(&handleNAND);
}
static u32 sdmmc_calc_size(u8* csd, int type)
{
u32 result = 0;
if(type == -1) type = csd[14] >> 6;
switch(type)
{
case 0:
{
u32 block_len=csd[9]&0xf;
block_len=1u<<block_len;
u32 mult=( u32)((csd[4]>>7)|((csd[5]&3)<<1));
mult=1u<<(mult+2);
result=csd[8]&3;
result=(result<<8)|csd[7];
result=(result<<2)|(csd[6]>>6);
result=(result+1)*mult*block_len/512;
}
break;
case 1:
result=csd[7]&0x3f;
result=(result<<8)|csd[6];
result=(result<<8)|csd[5];
result=(result+1)*1024;
break;
default:
break; //Do nothing otherwise FIXME perhaps return some error?
}
return result;
}
void sdmmc_init()
{
//NAND
handleNAND.isSDHC = 0;
handleNAND.SDOPT = 0;
handleNAND.res = 0;
handleNAND.initarg = 1;
handleNAND.clk = 0x20; // 523.655968 KHz
handleNAND.devicenumber = 1;
//SD
handleSD.isSDHC = 0;
handleSD.SDOPT = 0;
handleSD.res = 0;
handleSD.initarg = 0;
handleSD.clk = 0x20; // 523.655968 KHz
handleSD.devicenumber = 0;
*(vu16*)0x10006100 &= 0xF7FFu; //SDDATACTL32
*(vu16*)0x10006100 &= 0xEFFFu; //SDDATACTL32
#ifdef DATA32_SUPPORT
*(vu16*)0x10006100 |= 0x402u; //SDDATACTL32
#else
*(vu16*)0x10006100 |= 0x402u; //SDDATACTL32
#endif
*(vu16*)0x100060D8 = (*(vu16*)0x100060D8 & 0xFFDD) | 2;
#ifdef DATA32_SUPPORT
*(vu16*)0x10006100 &= 0xFFFFu; //SDDATACTL32
*(vu16*)0x100060D8 &= 0xFFDFu; //SDDATACTL
*(vu16*)0x10006104 = 512; //SDBLKLEN32
#else
*(vu16*)0x10006100 &= 0xFFFDu; //SDDATACTL32
*(vu16*)0x100060D8 &= 0xFFDDu; //SDDATACTL
*(vu16*)0x10006104 = 0; //SDBLKLEN32
#endif
*(vu16*)0x10006108 = 1; //SDBLKCOUNT32
*(vu16*)0x100060E0 &= 0xFFFEu; //SDRESET
*(vu16*)0x100060E0 |= 1u; //SDRESET
*(vu16*)0x10006020 |= TMIO_MASK_ALL; //SDIR_MASK0
*(vu16*)0x10006022 |= TMIO_MASK_ALL>>16; //SDIR_MASK1
*(vu16*)0x100060FC |= 0xDBu; //SDCTL_RESERVED7
*(vu16*)0x100060FE |= 0xDBu; //SDCTL_RESERVED8
*(vu16*)0x10006002 &= 0xFFFCu; //SDPORTSEL
#ifdef DATA32_SUPPORT
*(vu16*)0x10006024 = 0x20;
*(vu16*)0x10006028 = 0x40E9;
#else
*(vu16*)0x10006024 = 0x40; //Nintendo sets this to 0x20
*(vu16*)0x10006028 = 0x40E9; //Nintendo sets this to 0x40EE
#endif
*(vu16*)0x10006002 &= 0xFFFCu; ////SDPORTSEL
*(vu16*)0x10006026 = 512; //SDBLKLEN
*(vu16*)0x10006008 = 0; //SDSTOP
}
int Nand_Init()
{
// init the handle
handleNAND.isSDHC = 0;
handleNAND.SDOPT = 0;
handleNAND.res = 0;
handleNAND.initarg = 1;
handleNAND.clk = 0x20; // 523.655968 KHz
handleNAND.devicenumber = 1;
// The eMMC is always on. Nothing special to do.
set_target(&handleNAND);
sdmmc_send_command(&handleNAND,0,0);
do
{
do
{
sdmmc_send_command(&handleNAND,0x10701,0x100000);
} while ( !(handleNAND.error & 1) );
}
while((handleNAND.ret[0] & 0x80000000) == 0);
sdmmc_send_command(&handleNAND,0x10602,0x0);
if((handleNAND.error & 0x4))return -1;
sdmmc_send_command(&handleNAND,0x10403,handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4))return -1;
sdmmc_send_command(&handleNAND,0x10609,handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4))return -1;
handleNAND.total_size = sdmmc_calc_size((u8*)&handleNAND.ret[0],0);
setckl(0x201); // 16.756991 MHz
sdmmc_send_command(&handleNAND,0x10407,handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4))return -1;
handleNAND.SDOPT = 1;
sdmmc_send_command(&handleNAND,0x10506,0x3B70100); // Set 4 bit bus width.
if((handleNAND.error & 0x4))return -1;
sdmmc_mask16(REG_SDOPT, 0x8000, 0); // Switch to 4 bit mode.
sdmmc_send_command(&handleNAND,0x10506,0x3B90100); // Switch to high speed timing.
if((handleNAND.error & 0x4))return -1;
handleNAND.clk = 0x200; // 33.513982 MHz
setckl(0x200);
sdmmc_send_command(&handleNAND,0x1040D,handleNAND.initarg << 0x10);
if((handleNAND.error & 0x4))return -1;
sdmmc_send_command(&handleNAND,0x10410,0x200);
if((handleNAND.error & 0x4))return -1;
return 0;
}
int SD_Init()
{
// init the handle
handleSD.isSDHC = 0;
handleSD.SDOPT = 0;
handleSD.res = 0;
handleSD.initarg = 0;
handleSD.clk = 0x20; // 523.655968 KHz
handleSD.devicenumber = 0;
// We need to send at least 74 clock pulses.
set_target(&handleSD);
wait_cycles(0x1980); // ~75-76 clocks
sdmmc_send_command(&handleSD,0,0);
sdmmc_send_command(&handleSD,0x10408,0x1AA);
u32 temp = (handleSD.error & 0x1) << 0x1E;
u32 temp2 = 0;
do
{
do
{
sdmmc_send_command(&handleSD,0x10437,handleSD.initarg << 0x10);
sdmmc_send_command(&handleSD,0x10769,0x10100000 | temp); // Allow 150mA, 3.2-3.3V (from Process9)
temp2 = 1;
} while ( !(handleSD.error & 1) );
}
while((handleSD.ret[0] & 0x80000000) == 0);
if(!((handleSD.ret[0] >> 30) & 1) || !temp)
temp2 = 0;
handleSD.isSDHC = temp2;
sdmmc_send_command(&handleSD,0x10602,0);
if((handleSD.error & 0x4)) return -1;
sdmmc_send_command(&handleSD,0x10403,0);
if((handleSD.error & 0x4)) return -2;
handleSD.initarg = handleSD.ret[0] >> 0x10;
sdmmc_send_command(&handleSD,0x10609,handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -3;
// Command Class 10 support
const bool cmd6Supported = ((u8*)handleSD.ret)[10] & 0x40;
handleSD.total_size = sdmmc_calc_size((u8*)&handleSD.ret[0],-1);
setckl(0x201); // 16.756991 MHz
sdmmc_send_command(&handleSD,0x10507,handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -4;
// CMD55
sdmmc_send_command(&handleSD,0x10437,handleSD.initarg << 0x10);
if(handleSD.error & 0x4) return -5;
// ACMD42 SET_CLR_CARD_DETECT
sdmmc_send_command(&handleSD,0x1076A,0x0);
if(handleSD.error & 0x4) return -6;
sdmmc_send_command(&handleSD,0x10437,handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -7;
handleSD.SDOPT = 1;
sdmmc_send_command(&handleSD,0x10446,0x2);
if((handleSD.error & 0x4)) return -8;
sdmmc_mask16(REG_SDOPT, 0x8000, 0); // Switch to 4 bit mode.
// TODO: CMD6 to switch to high speed mode.
if(cmd6Supported)
{
sdmmc_write16(REG_SDSTOP,0);
sdmmc_write16(REG_SDBLKLEN32,64);
sdmmc_write16(REG_SDBLKLEN,64);
handleSD.rData = NULL;
handleSD.size = 64;
sdmmc_send_command(&handleSD,0x31C06,0x80FFFFF1);
sdmmc_write16(REG_SDBLKLEN,512);
if(handleSD.error & 0x4) return -9;
handleSD.clk = 0x200; // 33.513982 MHz
setckl(0x200);
}
else handleSD.clk = 0x201; // 16.756991 MHz
sdmmc_send_command(&handleSD,0x1040D,handleSD.initarg << 0x10);
if((handleSD.error & 0x4)) return -9;
sdmmc_send_command(&handleSD,0x10410,0x200);
if((handleSD.error & 0x4)) return -10;
return 0;
}
int sdmmc_get_cid(bool isNand, u32 *info)
{
struct mmcdevice *device;
if(isNand)
device = &handleNAND;
else
device = &handleSD;
set_target(device);
// use cmd7 to put sd card in standby mode
// CMD7
{
sdmmc_send_command(device,0x10507,0);
//if((device->error & 0x4)) return -1;
}
// get sd card info
// use cmd10 to read CID
{
sdmmc_send_command(device,0x1060A,device->initarg << 0x10);
//if((device->error & 0x4)) return -2;
for( int i = 0; i < 4; ++i ) {
info[i] = device->ret[i];
}
}
// put sd card back to transfer mode
// CMD7
{
sdmmc_send_command(device,0x10507,device->initarg << 0x10);
//if((device->error & 0x4)) return -3;
}
return 0;
}
u32 sdmmc_sdcard_init()
{
u32 ret = 0;
// SD mount fix
*((vu16*)0x10000020) = 0x340;
// init SDMMC / NAND
sdmmc_init();
if(Nand_Init() != 0) ret &= 1;
// init SDMMC / SDCARD
u32 timeout = 20; // number of tries (2ms per try)
do {
// if sd card is ready, stop polling
if(sdmmc_read16(REG_SDSTATUS0) & TMIO_STAT0_SIGSTATE)
break;
wait_cycles(268000000); // approx 2ms
timeout--;
} while(timeout);
if(!timeout || SD_Init() != 0) ret &= 2;
return ret;
}