/* * crypto.c * by Reisyukaku / Aurora Wright * Crypto libs from http://github.com/b1l1s/ctr * * Copyright (c) 2016 All Rights Reserved */ #include "crypto.h" #include "memory.h" #include "fatfs/sdmmc/sdmmc.h" /**************************************************************** * Crypto Libs ****************************************************************/ /* original version by megazig */ #ifndef __thumb__ #define BSWAP32(x) {\ __asm__\ (\ "eor r1, %1, %1, ror #16\n\t"\ "bic r1, r1, #0xFF0000\n\t"\ "mov %0, %1, ror #8\n\t"\ "eor %0, %0, r1, lsr #8\n\t"\ :"=r"(x)\ :"0"(x)\ :"r1"\ );\ }; #define ADD_u128_u32(u128_0, u128_1, u128_2, u128_3, u32_0) {\ __asm__\ (\ "adds %0, %4\n\t"\ "addcss %1, %1, #1\n\t"\ "addcss %2, %2, #1\n\t"\ "addcs %3, %3, #1\n\t"\ : "+r"(u128_0), "+r"(u128_1), "+r"(u128_2), "+r"(u128_3)\ : "r"(u32_0)\ : "cc"\ );\ } #else #define BSWAP32(x) {x = __builtin_bswap32(x);} #define ADD_u128_u32(u128_0, u128_1, u128_2, u128_3, u32_0) {\ __asm__\ (\ "mov r4, #0\n\t"\ "add %0, %0, %4\n\t"\ "adc %1, %1, r4\n\t"\ "adc %2, %2, r4\n\t"\ "adc %3, %3, r4\n\t"\ : "+r"(u128_0), "+r"(u128_1), "+r"(u128_2), "+r"(u128_3)\ : "r"(u32_0)\ : "cc", "r4"\ );\ } #endif /*__thumb__*/ static void aes_setkey(u8 keyslot, const void *key, u32 keyType, u32 mode) { if(keyslot <= 0x03) return; // Ignore TWL keys for now u32 *key32 = (u32 *)key; *REG_AESCNT = (*REG_AESCNT & ~(AES_CNT_INPUT_ENDIAN | AES_CNT_INPUT_ORDER)) | mode; *REG_AESKEYCNT = (*REG_AESKEYCNT >> 6 << 6) | keyslot | AES_KEYCNT_WRITE; REG_AESKEYFIFO[keyType] = key32[0]; REG_AESKEYFIFO[keyType] = key32[1]; REG_AESKEYFIFO[keyType] = key32[2]; REG_AESKEYFIFO[keyType] = key32[3]; } static void aes_use_keyslot(u8 keyslot) { if(keyslot > 0x3F) return; *REG_AESKEYSEL = keyslot; *REG_AESCNT = *REG_AESCNT | 0x04000000; /* mystery bit */ } static void aes_setiv(const void *iv, u32 mode) { const u32 *iv32 = (const u32 *)iv; *REG_AESCNT = (*REG_AESCNT & ~(AES_CNT_INPUT_ENDIAN | AES_CNT_INPUT_ORDER)) | mode; // Word order for IV can't be changed in REG_AESCNT and always default to reversed if(mode & AES_INPUT_NORMAL) { REG_AESCTR[0] = iv32[3]; REG_AESCTR[1] = iv32[2]; REG_AESCTR[2] = iv32[1]; REG_AESCTR[3] = iv32[0]; } else { REG_AESCTR[0] = iv32[0]; REG_AESCTR[1] = iv32[1]; REG_AESCTR[2] = iv32[2]; REG_AESCTR[3] = iv32[3]; } } static void aes_advctr(void *ctr, u32 val, u32 mode) { u32 *ctr32 = (u32 *)ctr; int i; if(mode & AES_INPUT_BE) { for(i = 0; i < 4; ++i) // Endian swap BSWAP32(ctr32[i]); } if(mode & AES_INPUT_NORMAL) { ADD_u128_u32(ctr32[3], ctr32[2], ctr32[1], ctr32[0], val); } else { ADD_u128_u32(ctr32[0], ctr32[1], ctr32[2], ctr32[3], val); } if(mode & AES_INPUT_BE) { for(i = 0; i < 4; ++i) // Endian swap BSWAP32(ctr32[i]); } } static void aes_change_ctrmode(void *ctr, u32 fromMode, u32 toMode) { u32 *ctr32 = (u32 *)ctr; int i; if((fromMode ^ toMode) & AES_CNT_INPUT_ENDIAN) { for(i = 0; i < 4; ++i) BSWAP32(ctr32[i]); } if((fromMode ^ toMode) & AES_CNT_INPUT_ORDER) { u32 temp = ctr32[0]; ctr32[0] = ctr32[3]; ctr32[3] = temp; temp = ctr32[1]; ctr32[1] = ctr32[2]; ctr32[2] = temp; } } static void aes_batch(void *dst, const void *src, u32 blockCount) { *REG_AESBLKCNT = blockCount << 16; *REG_AESCNT |= AES_CNT_START; const u32 *src32 = (const u32 *)src; u32 *dst32 = (u32 *)dst; u32 wbc = blockCount; u32 rbc = blockCount; while(rbc) { if(wbc && ((*REG_AESCNT & 0x1F) <= 0xC)) // There's space for at least 4 ints { *REG_AESWRFIFO = *src32++; *REG_AESWRFIFO = *src32++; *REG_AESWRFIFO = *src32++; *REG_AESWRFIFO = *src32++; wbc--; } if(rbc && ((*REG_AESCNT & (0x1F << 0x5)) >= (0x4 << 0x5))) // At least 4 ints available for read { *dst32++ = *REG_AESRDFIFO; *dst32++ = *REG_AESRDFIFO; *dst32++ = *REG_AESRDFIFO; *dst32++ = *REG_AESRDFIFO; rbc--; } } } static void aes(void *dst, const void *src, u32 blockCount, void *iv, u32 mode, u32 ivMode) { *REG_AESCNT = mode | AES_CNT_INPUT_ORDER | AES_CNT_OUTPUT_ORDER | AES_CNT_INPUT_ENDIAN | AES_CNT_OUTPUT_ENDIAN | AES_CNT_FLUSH_READ | AES_CNT_FLUSH_WRITE; u32 blocks; while(blockCount != 0) { if((mode & AES_ALL_MODES) != AES_ECB_ENCRYPT_MODE && (mode & AES_ALL_MODES) != AES_ECB_DECRYPT_MODE) aes_setiv(iv, ivMode); blocks = (blockCount >= 0xFFFF) ? 0xFFFF : blockCount; // Save the last block for the next decryption CBC batch's iv if((mode & AES_ALL_MODES) == AES_CBC_DECRYPT_MODE) { memcpy(iv, src + (blocks - 1) * AES_BLOCK_SIZE, AES_BLOCK_SIZE); aes_change_ctrmode(iv, AES_INPUT_BE | AES_INPUT_NORMAL, ivMode); } // Process the current batch aes_batch(dst, src, blocks); // Save the last block for the next encryption CBC batch's iv if((mode & AES_ALL_MODES) == AES_CBC_ENCRYPT_MODE) { memcpy(iv, dst + (blocks - 1) * AES_BLOCK_SIZE, AES_BLOCK_SIZE); aes_change_ctrmode(iv, AES_INPUT_BE | AES_INPUT_NORMAL, ivMode); } // Advance counter for CTR mode else if((mode & AES_ALL_MODES) == AES_CTR_MODE) aes_advctr(iv, blocks, ivMode); src += blocks * AES_BLOCK_SIZE; dst += blocks * AES_BLOCK_SIZE; blockCount -= blocks; } } static void sha_wait_idle() { while(*REG_SHA_CNT & 1); } static void sha(void *res, const void *src, u32 size, u32 mode) { sha_wait_idle(); *REG_SHA_CNT = mode | SHA_CNT_OUTPUT_ENDIAN | SHA_NORMAL_ROUND; const u32 *src32 = (const u32 *)src; int i; while(size >= 0x40) { sha_wait_idle(); for(i = 0; i < 4; ++i) { *REG_SHA_INFIFO = *src32++; *REG_SHA_INFIFO = *src32++; *REG_SHA_INFIFO = *src32++; *REG_SHA_INFIFO = *src32++; } size -= 0x40; } sha_wait_idle(); memcpy((void *)REG_SHA_INFIFO, src32, size); *REG_SHA_CNT = (*REG_SHA_CNT & ~SHA_NORMAL_ROUND) | SHA_FINAL_ROUND; while(*REG_SHA_CNT & SHA_FINAL_ROUND); sha_wait_idle(); u32 hashSize = SHA_256_HASH_SIZE; if(mode == SHA_224_MODE) hashSize = SHA_224_HASH_SIZE; else if(mode == SHA_1_MODE) hashSize = SHA_1_HASH_SIZE; memcpy(res, (void *)REG_SHA_HASH, hashSize); } /**************************************************************** * Nand/FIRM Crypto stuff ****************************************************************/ static u8 nandCTR[0x10], nandSlot; static u32 fatStart; //Initialize the CTRNAND crypto void ctrNandInit(void) { u8 nandCid[0x10]; u8 shaSum[0x20]; sdmmc_get_cid(1, (u32 *)nandCid); sha(shaSum, nandCid, 0x10, SHA_256_MODE); memcpy(nandCTR, shaSum, 0x10); if(console) { u8 keyY0x5[0x10] = {0x4D, 0x80, 0x4F, 0x4E, 0x99, 0x90, 0x19, 0x46, 0x13, 0xA2, 0x04, 0xAC, 0x58, 0x44, 0x60, 0xBE}; aes_setkey(0x05, keyY0x5, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL); nandSlot = 0x05; fatStart = 0x5CAD7; } else { nandSlot = 0x04; fatStart = 0x5CAE5; } } //Read and decrypt from the selected CTRNAND u32 ctrNandRead(u32 sector, u32 sectorCount, u8 *outbuf) { u8 tmpCTR[0x10]; memcpy(tmpCTR, nandCTR, 0x10); aes_advctr(tmpCTR, ((sector + fatStart) * 0x200) / AES_BLOCK_SIZE, AES_INPUT_BE | AES_INPUT_NORMAL); //Read u32 result; if(!firmSource) result = sdmmc_nand_readsectors(sector + fatStart, sectorCount, outbuf); else { sector += emuOffset; result = sdmmc_sdcard_readsectors(sector + fatStart, sectorCount, outbuf); } //Decrypt aes_use_keyslot(nandSlot); aes(outbuf, outbuf, sectorCount * 0x200 / AES_BLOCK_SIZE, tmpCTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); return result; } //Encrypt and write to the selected CTRNAND u32 ctrNandWrite(u32 sector, u32 sectorCount, u8 *inbuf) { u8 tmpCTR[0x10]; memcpy(tmpCTR, nandCTR, 0x10); aes_advctr(tmpCTR, (sector + fatStart) * 0x200 / AES_BLOCK_SIZE, AES_INPUT_BE | AES_INPUT_NORMAL); //Encrypt aes_use_keyslot(nandSlot); aes(inbuf, inbuf, sectorCount * 0x200 / AES_BLOCK_SIZE, tmpCTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); //Write if(!firmSource) return sdmmc_nand_writesectors(sector + fatStart, sectorCount, inbuf); sector += emuOffset; return sdmmc_sdcard_writesectors(sector + fatStart, sectorCount, inbuf); } //Decrypt a FIRM ExeFS void decryptExeFs(u8 *inbuf) { u8 *exeFsOffset = inbuf + *(u32 *)(inbuf + 0x1A0) * 0x200; u32 exeFsSize = *(u32 *)(inbuf + 0x1A4) * 0x200; u8 ncchCTR[0x10]; memset32(ncchCTR, 0, 0x10); for(u32 i = 0; i < 8; i++) ncchCTR[7 - i] = *(inbuf + 0x108 + i); ncchCTR[8] = 2; aes_setkey(0x2C, inbuf, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL); aes_setiv(ncchCTR, AES_INPUT_BE | AES_INPUT_NORMAL); aes_use_keyslot(0x2C); aes(inbuf - 0x200, exeFsOffset, exeFsSize / AES_BLOCK_SIZE, ncchCTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); } //ARM9Loader replacement void arm9Loader(u8 *arm9Section, u32 mode) { //Firm keys u8 keyY[0x10]; u8 arm9BinCTR[0x10]; u8 arm9BinSlot = mode ? 0x16 : 0x15; //Setup keys needed for arm9bin decryption memcpy(keyY, arm9Section + 0x10, 0x10); memcpy(arm9BinCTR, arm9Section + 0x20, 0x10); //Calculate the size of the ARM9 binary u32 arm9BinSize = 0; //http://stackoverflow.com/questions/12791077/atoi-implementation-in-c for(u8 *tmp = arm9Section + 0x30; *tmp; tmp++) arm9BinSize = (arm9BinSize << 3) + (arm9BinSize << 1) + *tmp - '0'; if(mode) { const u8 key2[0x10] = {0x42, 0x3F, 0x81, 0x7A, 0x23, 0x52, 0x58, 0x31, 0x6E, 0x75, 0x8E, 0x3A, 0x39, 0x43, 0x2E, 0xD0}; u8 keyX[0x10]; //Set 0x11 to key2 for the arm9bin and misc keys aes_setkey(0x11, key2, AES_KEYNORMAL, AES_INPUT_BE | AES_INPUT_NORMAL); aes_use_keyslot(0x11); aes(keyX, arm9Section + 0x60, 1, NULL, AES_ECB_DECRYPT_MODE, 0); aes_setkey(arm9BinSlot, keyX, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL); } aes_setkey(arm9BinSlot, keyY, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL); aes_setiv(arm9BinCTR, AES_INPUT_BE | AES_INPUT_NORMAL); aes_use_keyslot(arm9BinSlot); //Decrypt arm9bin aes(arm9Section + 0x800, arm9Section + 0x800, arm9BinSize / AES_BLOCK_SIZE, arm9BinCTR, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); //Set >=9.6 KeyXs if(mode) { u8 keyData[] = {0xDD, 0xDA, 0xA4, 0xC6, 0x2C, 0xC4, 0x50, 0xE9, 0xDA, 0xB6, 0x9B, 0x0D, 0x9D, 0x2A, 0x21, 0x98}; u8 decKey[0x10]; //Set keys 0x19..0x1F keyXs aes_use_keyslot(0x11); for(u8 slot = 0x19; slot < 0x20; slot++) { aes(decKey, keyData, 1, NULL, AES_ECB_DECRYPT_MODE, 0); aes_setkey(slot, decKey, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL); keyData[0xF] += 1; } } }