/* * This file is part of Luma3DS * Copyright (C) 2016 Aurora Wright, TuxSH * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Additional Terms 7.b of GPLv3 applies to this file: Requiring preservation of specified * reasonable legal notices or author attributions in that material or in the Appropriate Legal * Notices displayed by works containing it. */ /* * Crypto libs from http://github.com/b1l1s/ctr * kernel9Loader code originally adapted from https://github.com/Reisyukaku/ReiNand/blob/228c378255ba693133dec6f3368e14d386f2cde7/source/crypto.c#L233 * decryptNusFirm code adapted from https://github.com/mid-kid/CakesForeveryWan/blob/master/source/firm.c */ #include "crypto.h" #include "memory.h" #include "fatfs/sdmmc/sdmmc.h" /**************************************************************** * Crypto libs ****************************************************************/ /* original version by megazig */ #ifndef __thumb__ #define BSWAP32(x) {\ __asm__\ (\ "eor r1, %1, %1, ror #16\n\t"\ "bic r1, r1, #0xFF0000\n\t"\ "mov %0, %1, ror #8\n\t"\ "eor %0, %0, r1, lsr #8\n\t"\ :"=r"(x)\ :"0"(x)\ :"r1"\ );\ }; #define ADD_u128_u32(u128_0, u128_1, u128_2, u128_3, u32_0) {\ __asm__\ (\ "adds %0, %4\n\t"\ "addcss %1, %1, #1\n\t"\ "addcss %2, %2, #1\n\t"\ "addcs %3, %3, #1\n\t"\ : "+r"(u128_0), "+r"(u128_1), "+r"(u128_2), "+r"(u128_3)\ : "r"(u32_0)\ : "cc"\ );\ } #else #define BSWAP32(x) {x = __builtin_bswap32(x);} #define ADD_u128_u32(u128_0, u128_1, u128_2, u128_3, u32_0) {\ __asm__\ (\ "mov r4, #0\n\t"\ "add %0, %0, %4\n\t"\ "adc %1, %1, r4\n\t"\ "adc %2, %2, r4\n\t"\ "adc %3, %3, r4\n\t"\ : "+r"(u128_0), "+r"(u128_1), "+r"(u128_2), "+r"(u128_3)\ : "r"(u32_0)\ : "cc", "r4"\ );\ } #endif /*__thumb__*/ static void aes_setkey(u8 keyslot, const void *key, u32 keyType, u32 mode) { if(keyslot <= 0x03) return; // Ignore TWL keys for now u32 *key32 = (u32 *)key; *REG_AESCNT = (*REG_AESCNT & ~(AES_CNT_INPUT_ENDIAN | AES_CNT_INPUT_ORDER)) | mode; *REG_AESKEYCNT = (*REG_AESKEYCNT >> 6 << 6) | keyslot | AES_KEYCNT_WRITE; REG_AESKEYFIFO[keyType] = key32[0]; REG_AESKEYFIFO[keyType] = key32[1]; REG_AESKEYFIFO[keyType] = key32[2]; REG_AESKEYFIFO[keyType] = key32[3]; } static void aes_use_keyslot(u8 keyslot) { if(keyslot > 0x3F) return; *REG_AESKEYSEL = keyslot; *REG_AESCNT = *REG_AESCNT | 0x04000000; /* mystery bit */ } static void aes_setiv(const void *iv, u32 mode) { const u32 *iv32 = (const u32 *)iv; *REG_AESCNT = (*REG_AESCNT & ~(AES_CNT_INPUT_ENDIAN | AES_CNT_INPUT_ORDER)) | mode; // Word order for IV can't be changed in REG_AESCNT and always default to reversed if(mode & AES_INPUT_NORMAL) { REG_AESCTR[0] = iv32[3]; REG_AESCTR[1] = iv32[2]; REG_AESCTR[2] = iv32[1]; REG_AESCTR[3] = iv32[0]; } else { REG_AESCTR[0] = iv32[0]; REG_AESCTR[1] = iv32[1]; REG_AESCTR[2] = iv32[2]; REG_AESCTR[3] = iv32[3]; } } static void aes_advctr(void *ctr, u32 val, u32 mode) { u32 *ctr32 = (u32 *)ctr; int i; if(mode & AES_INPUT_BE) { for(i = 0; i < 4; ++i) // Endian swap BSWAP32(ctr32[i]); } if(mode & AES_INPUT_NORMAL) { ADD_u128_u32(ctr32[3], ctr32[2], ctr32[1], ctr32[0], val); } else { ADD_u128_u32(ctr32[0], ctr32[1], ctr32[2], ctr32[3], val); } if(mode & AES_INPUT_BE) { for(i = 0; i < 4; ++i) // Endian swap BSWAP32(ctr32[i]); } } static void aes_change_ctrmode(void *ctr, u32 fromMode, u32 toMode) { u32 *ctr32 = (u32 *)ctr; int i; if((fromMode ^ toMode) & AES_CNT_INPUT_ENDIAN) { for(i = 0; i < 4; ++i) BSWAP32(ctr32[i]); } if((fromMode ^ toMode) & AES_CNT_INPUT_ORDER) { u32 temp = ctr32[0]; ctr32[0] = ctr32[3]; ctr32[3] = temp; temp = ctr32[1]; ctr32[1] = ctr32[2]; ctr32[2] = temp; } } static void aes_batch(void *dst, const void *src, u32 blockCount) { *REG_AESBLKCNT = blockCount << 16; *REG_AESCNT |= AES_CNT_START; const u32 *src32 = (const u32 *)src; u32 *dst32 = (u32 *)dst; u32 wbc = blockCount; u32 rbc = blockCount; while(rbc) { if(wbc && ((*REG_AESCNT & 0x1F) <= 0xC)) // There's space for at least 4 ints { *REG_AESWRFIFO = *src32++; *REG_AESWRFIFO = *src32++; *REG_AESWRFIFO = *src32++; *REG_AESWRFIFO = *src32++; wbc--; } if(rbc && ((*REG_AESCNT & (0x1F << 0x5)) >= (0x4 << 0x5))) // At least 4 ints available for read { *dst32++ = *REG_AESRDFIFO; *dst32++ = *REG_AESRDFIFO; *dst32++ = *REG_AESRDFIFO; *dst32++ = *REG_AESRDFIFO; rbc--; } } } static void aes(void *dst, const void *src, u32 blockCount, void *iv, u32 mode, u32 ivMode) { *REG_AESCNT = mode | AES_CNT_INPUT_ORDER | AES_CNT_OUTPUT_ORDER | AES_CNT_INPUT_ENDIAN | AES_CNT_OUTPUT_ENDIAN | AES_CNT_FLUSH_READ | AES_CNT_FLUSH_WRITE; u32 blocks; while(blockCount != 0) { if((mode & AES_ALL_MODES) != AES_ECB_ENCRYPT_MODE && (mode & AES_ALL_MODES) != AES_ECB_DECRYPT_MODE) aes_setiv(iv, ivMode); blocks = (blockCount >= 0xFFFF) ? 0xFFFF : blockCount; // Save the last block for the next decryption CBC batch's iv if((mode & AES_ALL_MODES) == AES_CBC_DECRYPT_MODE) { memcpy(iv, src + (blocks - 1) * AES_BLOCK_SIZE, AES_BLOCK_SIZE); aes_change_ctrmode(iv, AES_INPUT_BE | AES_INPUT_NORMAL, ivMode); } // Process the current batch aes_batch(dst, src, blocks); // Save the last block for the next encryption CBC batch's iv if((mode & AES_ALL_MODES) == AES_CBC_ENCRYPT_MODE) { memcpy(iv, dst + (blocks - 1) * AES_BLOCK_SIZE, AES_BLOCK_SIZE); aes_change_ctrmode(iv, AES_INPUT_BE | AES_INPUT_NORMAL, ivMode); } // Advance counter for CTR mode else if((mode & AES_ALL_MODES) == AES_CTR_MODE) aes_advctr(iv, blocks, ivMode); src += blocks * AES_BLOCK_SIZE; dst += blocks * AES_BLOCK_SIZE; blockCount -= blocks; } } static void sha_wait_idle() { while(*REG_SHA_CNT & 1); } static void sha(void *res, const void *src, u32 size, u32 mode) { sha_wait_idle(); *REG_SHA_CNT = mode | SHA_CNT_OUTPUT_ENDIAN | SHA_NORMAL_ROUND; const u32 *src32 = (const u32 *)src; int i; while(size >= 0x40) { sha_wait_idle(); for(i = 0; i < 4; ++i) { *REG_SHA_INFIFO = *src32++; *REG_SHA_INFIFO = *src32++; *REG_SHA_INFIFO = *src32++; *REG_SHA_INFIFO = *src32++; } size -= 0x40; } sha_wait_idle(); memcpy((void *)REG_SHA_INFIFO, src32, size); *REG_SHA_CNT = (*REG_SHA_CNT & ~SHA_NORMAL_ROUND) | SHA_FINAL_ROUND; while(*REG_SHA_CNT & SHA_FINAL_ROUND); sha_wait_idle(); u32 hashSize = SHA_256_HASH_SIZE; if(mode == SHA_224_MODE) hashSize = SHA_224_HASH_SIZE; else if(mode == SHA_1_MODE) hashSize = SHA_1_HASH_SIZE; memcpy(res, (void *)REG_SHA_HASH, hashSize); } /*****************************************************************/ static u8 __attribute__((aligned(4))) nandCtr[AES_BLOCK_SIZE]; static u8 nandSlot; static u32 fatStart; static u8 __attribute__((aligned(4))) shaHashBackup[SHA_256_HASH_SIZE]; static bool didShaHashBackup = false; void ctrNandInit(void) { u8 __attribute__((aligned(4))) cid[AES_BLOCK_SIZE]; u8 __attribute__((aligned(4))) shaSum[SHA_256_HASH_SIZE]; sdmmc_get_cid(1, (u32 *)cid); sha(shaSum, cid, sizeof(cid), SHA_256_MODE); memcpy(nandCtr, shaSum, sizeof(nandCtr)); if(isN3DS) { u8 __attribute__((aligned(4))) keyY0x5[AES_BLOCK_SIZE] = {0x4D, 0x80, 0x4F, 0x4E, 0x99, 0x90, 0x19, 0x46, 0x13, 0xA2, 0x04, 0xAC, 0x58, 0x44, 0x60, 0xBE}; aes_setkey(0x05, keyY0x5, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL); nandSlot = 0x05; fatStart = 0x5CAD7; } else { nandSlot = 0x04; fatStart = 0x5CAE5; } } u32 ctrNandRead(u32 sector, u32 sectorCount, u8 *outbuf) { u8 __attribute__((aligned(4))) tmpCtr[sizeof(nandCtr)]; memcpy(tmpCtr, nandCtr, sizeof(nandCtr)); aes_advctr(tmpCtr, ((sector + fatStart) * 0x200) / AES_BLOCK_SIZE, AES_INPUT_BE | AES_INPUT_NORMAL); //Read u32 result; if(firmSource == FIRMWARE_SYSNAND) result = sdmmc_nand_readsectors(sector + fatStart, sectorCount, outbuf); else { sector += emuOffset; result = sdmmc_sdcard_readsectors(sector + fatStart, sectorCount, outbuf); } //Decrypt aes_use_keyslot(nandSlot); aes(outbuf, outbuf, sectorCount * 0x200 / AES_BLOCK_SIZE, tmpCtr, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); return result; } void set6x7xKeys(void) { if(!isDevUnit) { const u8 __attribute__((aligned(4))) keyX0x25[AES_BLOCK_SIZE] = {0xCE, 0xE7, 0xD8, 0xAB, 0x30, 0xC0, 0x0D, 0xAE, 0x85, 0x0E, 0xF5, 0xE3, 0x82, 0xAC, 0x5A, 0xF3}; const u8 __attribute__((aligned(4))) keyY0x2F[AES_BLOCK_SIZE] = {0xC3, 0x69, 0xBA, 0xA2, 0x1E, 0x18, 0x8A, 0x88, 0xA9, 0xAA, 0x94, 0xE5, 0x50, 0x6A, 0x9F, 0x16}; aes_setkey(0x25, keyX0x25, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL); aes_setkey(0x2F, keyY0x2F, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL); /* [3dbrew] The first 0x10-bytes are checked by the v6.0/v7.0 NATIVE_FIRM keyinit function, when non-zero it clears this block and continues to do the key generation. Otherwise when this block was already all-zero, it immediately returns. */ memset32((void *)0x01FFCD00, 0, 0x10); } } void decryptExeFs(u8 *inbuf) { u8 *exeFsOffset = inbuf + *(u32 *)(inbuf + 0x1A0) * 0x200; u32 exeFsSize = *(u32 *)(inbuf + 0x1A4) * 0x200; u8 __attribute__((aligned(4))) ncchCtr[AES_BLOCK_SIZE] = {0}; for(u32 i = 0; i < 8; i++) ncchCtr[7 - i] = *(inbuf + 0x108 + i); ncchCtr[8] = 2; aes_setkey(0x2C, inbuf, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL); aes_use_keyslot(0x2C); aes(inbuf - 0x200, exeFsOffset, exeFsSize / AES_BLOCK_SIZE, ncchCtr, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); } void decryptNusFirm(const u8 *inbuf, u8 *outbuf, u32 ncchSize) { const u8 keyY0x3D[AES_BLOCK_SIZE] = {0x0C, 0x76, 0x72, 0x30, 0xF0, 0x99, 0x8F, 0x1C, 0x46, 0x82, 0x82, 0x02, 0xFA, 0xAC, 0xBE, 0x4C}; u8 __attribute__((aligned(4))) cetkIv[AES_BLOCK_SIZE] = {0}; u8 __attribute__((aligned(4))) titleKey[AES_BLOCK_SIZE]; memcpy(titleKey, inbuf + 0x1BF, sizeof(titleKey)); memcpy(cetkIv, inbuf + 0x1DC, 8); aes_setkey(0x3D, keyY0x3D, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL); aes_use_keyslot(0x3D); aes(titleKey, titleKey, 1, cetkIv, AES_CBC_DECRYPT_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); u8 __attribute__((aligned(4))) ncchIv[AES_BLOCK_SIZE] = {0}; aes_setkey(0x16, titleKey, AES_KEYNORMAL, AES_INPUT_BE | AES_INPUT_NORMAL); aes_use_keyslot(0x16); aes(outbuf, outbuf, ncchSize / AES_BLOCK_SIZE, ncchIv, AES_CBC_DECRYPT_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); decryptExeFs(outbuf); } void kernel9Loader(u8 *arm9Section) { //Determine the kernel9loader version u32 k9lVersion; switch(arm9Section[0x53]) { case 0xFF: k9lVersion = 0; break; case '1': k9lVersion = 1; break; default: k9lVersion = 2; break; } u32 startOfArm9Bin = *(u32 *)(arm9Section + 0x800); bool needToDecrypt = startOfArm9Bin != 0x47704770 && startOfArm9Bin != 0xB0862000; if(!isDevUnit && (k9lVersion == 2 || (k9lVersion == 1 && needToDecrypt))) { //Set 0x11 keyslot const u8 __attribute__((aligned(4))) key1[AES_BLOCK_SIZE] = {0x07, 0x29, 0x44, 0x38, 0xF8, 0xC9, 0x75, 0x93, 0xAA, 0x0E, 0x4A, 0xB4, 0xAE, 0x84, 0xC1, 0xD8}; const u8 __attribute__((aligned(4))) key2[AES_BLOCK_SIZE] = {0x42, 0x3F, 0x81, 0x7A, 0x23, 0x52, 0x58, 0x31, 0x6E, 0x75, 0x8E, 0x3A, 0x39, 0x43, 0x2E, 0xD0}; aes_setkey(0x11, k9lVersion == 2 ? key2 : key1, AES_KEYNORMAL, AES_INPUT_BE | AES_INPUT_NORMAL); } if(needToDecrypt) { u8 arm9BinSlot; if(!k9lVersion) arm9BinSlot = 0x15; else { arm9BinSlot = 0x16; //Set keyX u8 __attribute__((aligned(4))) keyX[AES_BLOCK_SIZE]; aes_use_keyslot(0x11); aes(keyX, arm9Section + 0x60, 1, NULL, AES_ECB_DECRYPT_MODE, 0); aes_setkey(0x16, keyX, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL); } //Set keyY u8 __attribute__((aligned(4))) keyY[AES_BLOCK_SIZE]; memcpy(keyY, arm9Section + 0x10, sizeof(keyY)); aes_setkey(arm9BinSlot, keyY, AES_KEYY, AES_INPUT_BE | AES_INPUT_NORMAL); //Set CTR u8 __attribute__((aligned(4))) arm9BinCtr[AES_BLOCK_SIZE]; memcpy(arm9BinCtr, arm9Section + 0x20, sizeof(arm9BinCtr)); //Calculate the size of the ARM9 binary u32 arm9BinSize = 0; //http://stackoverflow.com/questions/12791077/atoi-implementation-in-c for(u8 *tmp = arm9Section + 0x30; *tmp != 0; tmp++) arm9BinSize = (arm9BinSize << 3) + (arm9BinSize << 1) + *tmp - '0'; //Decrypt ARM9 binary aes_use_keyslot(arm9BinSlot); aes(arm9Section + 0x800, arm9Section + 0x800, arm9BinSize / AES_BLOCK_SIZE, arm9BinCtr, AES_CTR_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); } //Set >=9.6 KeyXs if(k9lVersion == 2) { u8 __attribute__((aligned(4))) keyData[AES_BLOCK_SIZE] = {0xDD, 0xDA, 0xA4, 0xC6, 0x2C, 0xC4, 0x50, 0xE9, 0xDA, 0xB6, 0x9B, 0x0D, 0x9D, 0x2A, 0x21, 0x98}; u8 __attribute__((aligned(4))) decKey[sizeof(keyData)]; //Set keys 0x19..0x1F keyXs aes_use_keyslot(0x11); for(u8 slot = 0x19; slot < 0x20; slot++, keyData[0xF]++) { aes(decKey, keyData, 1, NULL, AES_ECB_DECRYPT_MODE, 0); aes_setkey(slot, decKey, AES_KEYX, AES_INPUT_BE | AES_INPUT_NORMAL); } } } void computePinHash(u8 *outbuf, const u8 *inbuf) { u8 __attribute__((aligned(4))) cid[AES_BLOCK_SIZE]; u8 __attribute__((aligned(4))) cipherText[AES_BLOCK_SIZE]; if(!didShaHashBackup) { memcpy(shaHashBackup, (void *)REG_SHA_HASH, sizeof(shaHashBackup)); didShaHashBackup = true; } sdmmc_get_cid(1, (u32 *)cid); aes_use_keyslot(4); //Console-unique keyslot whose keys are set by the ARM9 bootROM aes(cipherText, inbuf, 1, cid, AES_CBC_ENCRYPT_MODE, AES_INPUT_BE | AES_INPUT_NORMAL); sha(outbuf, cipherText, sizeof(cipherText), SHA_256_MODE); } void restoreShaHashBackup(void) { if(didShaHashBackup) memcpy((void *)REG_SHA_HASH, shaHashBackup, sizeof(shaHashBackup)); }